Adaptation in Open Systems

Reflection as a Backbone

Sylvain Giroux

IRO, Faculté des arts et sciences, IREMIA, Faculté des sciences,
Université de la Réunion
97489 St Denis, La Réunion
email: senteni @iremia.fr

Université de Montréal,
Montréal, Canada, H3C 317
email: giroux @iro.umontreal.ca

Abstract

This paper presents the design principles behind
ReActalk implementation: ReActalk uses an
organizational approach of reflection and is meant to
provide a framework for the study of adaptation in the
context of agents and open systems. Since open systems
interact with a fluid reality, they must adapt in order to
mitigate the consequences of the narrowness and the
brittleness of traditional systems. Accordingly, ReActalk
uses reflection as a framework for adaptive processes
evolving in a dynamic environment. We show, on the one
hand, how reflection can implement adaptive processes,
and, on the other hand, how adaptive mechanisms are
actualized in ReActalk. First we define, based on Gregory
Bateson's work, adaptation viewed either as a modification
of one's behavior or as a modification of one's
environment. Then we outline how to get from Bateson's
view to an architecture suited for adaptation. Finally, we
show how ReActalk allows both types of adaptation.

1 Introduction

This paper presents the ins and outs of ReActalk! [15],

a reflective actorZ kemnel dedicated to adaptation, written on
top of Smalltalk-80. Indeed object-oriented programming
(OOP) provides a promising framework for the integration
of heterogeneous systems where encapsulation,
preservation of locality and message passing appear as
essential dimensions. Multi-agent systems add concurrency
to these needs [6]. However we still need an integrating
perspective on all those concepts in the context of open
systems (OS).

OS are by definition interacting with a fluid reality.
Ineluctably they must adapt in order to overcowne the

1 ReActalk stands for reflective actors in Smalitalk-80.

From our standpoint, the distinction between an agent and
an actor depends on the viewpoint : the term “actor” refers
to an entity taken in isolation whereas an agent is an actor
understood as a member of an ecosystem. We use the term
organization to express the reification of a standpoint on
an ecosystem.

0-8186-3135-X/93 $03.00 © 1993 IEEE

Alain Senteni

114

Guy Lapalme

IRO, Faculté des arts et sciences,
Université de Montréal,
Montréal, Canada, H3C 3J7
email: lapalme@iro.umontreal.ca

narrowness and the brittleness of traditional systems [4].
Furthermore an adaptive system would have more chances
to evolve on its own without breaking down when faced
with unexpected situations, and therefore releasing users
and designers from intervening. Since adaptation smooths
the interactions, it may also make easier the integration
and the cooperation of heterogeneous systems.

Moreover, if we render OS adaptive, we can take
advantage of their openness and their adaptiveness in the
construction of complex systems. Ultimately, instead of
building systems from A to Z, trying to foresee all the
harmful interactions, if parts are considered and designed as
adaptive OS, we would “just” need to put them together in
order to build the system: parts will cooperate and adapt to
each others and the overall system will emerge from their
interactions.

Both openness and adaptation seem the key concepts and
consequently they must be integrated in a supporting
architecture. An OS gets its openness from its embedding
in larger systems. From the viewpoint of an agent,
adaptation relies either on self-modification or
modification of its environment. ReActalk's design puts
forward both characteristics.

In the paper, an OS is viewed as an ecosystem where
(re)active agents, passive resources and externai influences
crystallize their interactions: interpreted from outside,
agents seem to cooperate, thus cooperation found
expression throughout adaptive mechanisms. Adaptive
mechanisms, guided by constraints internal to an agent
(goals, abilities...) or external (other agents, available
resources...), aim at balancing the ecosystem. Such an
equilibrium is either interpreted as the solution of a given
problem as in ecoproblem solving [10] or corresponds to a
configuration favorable to the solution of the problem as
in [13].

Therefore the need for a general framework designed to
support and structure adaptive mechanisms has guided the
design and implementation of ReActalk. ReActalk
proposes an organizational approach to reflection in the
actor paradigm and is meant to provide a framework for the
study of adaptation in the context of actors and OS. While
most reflective systems, such as [21], use reflection to
provide hooks on the programming language and its
environment, for the user to open it and customize it, our

approach differs. We use reflection as the essential
dimension of adaptive processes evolving in a dynamic
environment.

A closer look at adaptation helps identifying the
relevance of the following concepts: individual,
environment and the relation between an individual and its
environment. These elements form the basis of ReActalk.
Starting from the need for OS to become adaptive, the
main goal of this paper is, on the one hand, to show how
reflection can implement adaptive processes, and, on the
other hand, how adaptive mechanisms are actualized in
ReActalk.

The paper is articulated around three major sections:

¢ Section 2 presents the principles that lead to the
design of ReActalk. First of all Gregory Bateson's
perspective on adaptation is put forward. Then we
derive a partial ontology. Finally ReActalk is
described as an instantiation of this ontology.

¢ Section 3 shows why and how reflection provides
an adequate framework to support adaptation,
viewed as a modification of one's behavior. This
section is closed by the description of some of the
adaptive mechanisms implemented within
ReActalk. They act in such a way that
heterogeneous agents can dynamically and
temporarily modify their model of computation.
These modifications allow them to work togetber.

e Section 4 follows the same path, but deals rather
with adaptation, viewed as a modification of one's
environment.

ReActalk is also compared to related works. Paths worth
investigating are finally outlined.

2 A platform for the study of adaptation

This section begins with a discussion on the perspective
adopted upon adaptation and its consequences. From this
perspective, we derive at first a partial ontology, then a
general architecture for the exploration of adaptation, and
finally, ReActalk, as an implementation of this
architecture. This section deals only with the ontogeny of
ReActalk, while the next one shows how it can be used to
actualize the adaptation process.

2.1 Adaptation

Although there is a huge amount of work on adaptation,
we have selected Gregory Bateson's perspective [2] [3]:

Adaptation. A feature of an organism whereby it
seemingly fits better into its environment
and way of life. The process of achieving
that fit. (3, p. 249].

Bateson's approach seems general enough to be transposed
into computer science as well as precise enough to be
applied. Furthermore, it brings out several important
topics related to OS and real world constraints. First of all,
it underlines the importance of the link between an
organism and its environment: from this kind of systemic
perspective, an organism cannot be understood unless it is
viewed as a component of a larger system. The openness
of OS lies in their embedding into larger ones. Secondly,
Bateson suggests two ways for an organismn to adapt:

¢ either to self-modify, i.e. modify one's behavior;
¢ or to modify one's environment.

The first viewpoint suggests reflection as a framework for
adaptation. The second one supposes the ability to modify
its environment. Thus, adaptation is driven by the triad:

* the individual perceived as a whole by its
environment;

¢ the environment as an organization of individuals
and relations among them;

¢ the relation as the interaction between an individual
and its environment.

Inspired by this triad, the organizational reflection
embodied in ReActalk combines both methods.

2.2 Individuals, organizations and relations

This section states axioms on the nature of the world,
deduces the connections between individuals, organizations
and relations and uses the conclusions to define an
architecture.

2.2.1 An intuitive ontology

Since computer systems are bound to operate in
conjunction with the world, this one appears as both a
source of inspiration and a source of constraints.
Consequently, the following axioms! should guide the
definition of an architecture for adaptive systems:

Al the world is made of objects;

A2 systems in the world are basically open: real
systems are connected to and communicate with
the external world;

A3 the world is basically concurrent;

A4 an entity belongs to an environment and must be
understood in relation with it;

A5 an entity needs to adapt to changing situations.

1 The ontology proposed in [28] goes in the same direction
than the intuitions embodied in these axioms.

2.2.2 A coherent architecture for the design of
adaptive systems

Not to start from scratch, the axioms suggested the use
of actors [17], agents [12], environment [22] and reflection
[24]. Nevertheless, these tools ought to be integrated into
a coherent perspective. Since the interactions among
entities appear to be crucial, the notion of organization
seems the one able to articulate and unify these concepts:

® an actor is an organization of actors;

* an actor is reflective and thus can reason or act upon
its own behavior;

the reflective representation of an actor is an
organization of actors.

* an agent is an actor part of an organization;

® an ecosystem is an organization.

From this viewpoint, the world is a set of micro-
ecosystems interacting with one another, themselves
embedded into higher level ecosystems. For instance, the
model of a dinner for two in a restaurant is made of two
ecosystems interacting in the context of a restaurant, a
“higher level” ecosystem.

2.2.3 A formal definition of an ecosystem

Formally, an ecosystem can be described by a directed
labelled graph <A, R>. This graph evolves dynamically
by the addition/deletion of vertices and edges. The set of
vertices A contains agents. The set of directed labelled
edges R define relations among the agents in the context
of the ecosystem. Such a relation defines a
communication path between two agents, so it is a triad
<S, D, P>

where § is the source agent
D is the destination agent
P, the label, is an agent who manages the
communication.

Thus, the relation <al, a2, a3> means that agent al can
communicate with agent a2 through the communication
protocol defined by agent a3. The graph is directed because
if agent al can send messages to agent a2, the converse is
not necessarily true,

Since the exchange of informations is subject to many
constraints in real life, the communication agent is
responsible to render them explicit. A communication
agent could model the transfer of information through
smell diffusion. For instance, if the ecosystem is placed in
the vacuum, it censors noise message. A communication
agent could also serve as an interpreter between the agents
performing message translation, type transformation on
argument or adapting feedback through result
modification, therefore smoothing the heterogeneity
among agents. Finally Watzlawick, Beavin and Jackson

116

[31] point out that although it is possible to transmit
sequences of symbols with a perfect syntactic precision,
these symbols would have no meaning unless the
transmitter and the receiver have agreed on their meaning.
In this sense, any information sharing presupposes a
semantic convention. In that case, communication agents
render explicit the semantic convention of the agents.

2.3 ReActalk

ReActalk is built on top of Actalk [7], an actor
platform in Smalltalk-80. ReActalk proposes an
organizational approach of reflection in an actor universe.
This section presents its main features. See [15] for a full
description.

2.3.1 Overview of the architecture

While the actor paradigm allows the manipulation of
entities on an individual and concurrent basis, ReActalk
introduces in this paradigm the concepts of reflection and
organizations, proposing an organizational approach of
reflection. Reflective levels are viewed as ecosystems of
agents (Fig. 1). An actor is described in a causally
connected way by a personal meta-actor, where a meta-
actor is an ecosystem of agents evolving along the time:
agents and relations can join, disappear, be replaced.
Finally, this reflective actor architecture leads to a model
well suited for the representation of OS, where an actor
can be modified or can modify itself dynamically and thus,
adapt to changes in its environment.

2.3.2 Metaphors around ReActalk

As mentioned by Winograd and Flores [32], we must
take social activity as the ultimate foundation of
intelligibility, and even of existence. From this
perspective, an entity is indissociable of its environment
and their symbiosis determines the development of both
[2]. This statement is the basis of our opportunist
approach: an entity reacts to its environment. The
reactions are triggered by the stimuli received from the
environment.

In OOP, messages act as stimuli activating objects. In
ReActalk, actors are reactive message-driven entities and
accordingly meta-actors reify the message-processing
mechanisms of their denotations. In a biological analogy,
a meta-actor would reify the actor's nervous system. In an
economic one, it is a partial taylorization! of the message-
processing system. Each component of the meta-actor

1 Taylorism was defined by F. W. Taylor. It is a system for
labor organization, execution time control and workers
remunerations. It is important to stress that taylorism in
ReActalk is not apply as a whole, we restrict its
application to labor organization. Many works in
distributed artificial intelligence is likely to complete this
partial taylorization, specially with regard to execution
time control and remuneration.

SocletyOfAgents

agents = {ArrivalManager, ... }
relations ={ (ArrivalManager, Receptionist, CommunicationProtocol),
cee)

denotation
l‘ -------------------- ‘ --------------------------------- .
[[
1 '
' MailboxOrganizer VBllBOXRetIElVEIQ ScriptManager '
1 [
t ‘ ‘ '
] 1
1]
1 1
1 1
1 s 1
' Receptionist [after execution '
: ‘ [“execution of scripd :
' before execution | '
) 1
' AN . ExecuticnManager '
! 1
' ArrivalManager 1

1

1 '
' 1
1 1
: MetaActorr :
] 1
] 1
']
1 1
' 1
] 1

| SocletyOfAgents I

s /
mailbox
pr—-
aMessage behavi
,_RenccuveActorlkh-vlor
(e
\. J J

Fig. 1 An actor, its meta-actor and its meta-meta-actor. The meta-actor is a message
processing factory: a message transmission to the actor is interpreted in terms of
operations at the metalevel. If highlight is put on flexibility: the meta-actor is
described as a society of agents by the meta-meta-actor. For the sake of simplicity,
we have not shown all the metarepresentations (meta-actors, classes, ecosystems).

117

organization is then understood as a work station on a
message-processing line, taking care of a step of message-
processing. Pieces on the line are reified messages; their
flow along the line embodies the relations.

This perspective upon actors is very subjective and does
not pretend to be the only one, but hopefully, reflection
helps integrating different perspectives. Reflection
prevents from freezing a standpoint in the structure of an
actor, as would a rigid taylorization of the message-
processing system through instance variables such as
message-handler, message-receiver..!

3 Adaptation through reflection

Adaptation lies on the ability to dynamically change
either one's bebavior or one's environment. This section
puts the emphasis on the modification of one's behavior
and discusses ReActalk answers to questions such as:

* When to adapt ?
How to adapt ?

Who is in charge of the adaptation process ?

Should adaptation be an individual or a collective
endeavor ?

Should adaptation be permanent or temporary ?
3.1 The implementor's standpoint

The activation of the adaptation process is the first
fundamental question. Several approaches are possible,
from minimal to extensive. Extensive adaptation is a
continuous adaptation process managed from the metalevel
while minimal adaptation is a process triggered by an
express request of the denotation upon failure.
Implementationwise, it is a matter of concurrent versus
sequential evolution of meta and denoted levels. If
concurrent, the meta-actor watches continuously its
denotation, gathers informations and makes decisions. If
sequential, the meta-actor and its denotation should be
activated alternately and adaptation is triggered by the
denotation that sends its meta-actor requests for reflective
operations.

The second fundamental question is : “Should adaptation
be an individual or a collective endeavor 7" If collective,
the adaptation process can modify:

* either the characteristics of a set of individuals (e.g.
species genetic evolution);

1 [16] shows the lack of flexibility and adaptability of this
approach: the model of computation cannot evolves
dynamically. The processing line structure varies
according to the model of computation. Freezing its
structure forbids dynamic evolution and prohibits a large
range of adaptations.

118

* or the structure of relations among a group of
individuals or even the individuals themselves (e.g.
restructuring of a company).

3.2 When to adapt ?

Should adaptation be a continuous process or should it
be activated only under special circumstances? Both
scenarios are feasible and relevant for both individuals and
groups. The answer dictates the parallelism between meta
and denoted levels.

3.2.1 When adaptation decision
belongs to the metalevel

making

To conceive adaptation as a continuous process, always
active, gathering data, checking for adaptation
opportunities and making appropriate decisions, implies
that the metalevel is in charge of all the steps. In this
scenario, denoted actors need not to be “conscious” of the
process. Therefore, the activities of meta and denoted
levels can be concurrent.

Let's take an example in actor programming involving
adaptation and efficiency:

Let A be an actor inheriting a method M, deeply
buried in the inheritance hierarchy;
TA, A’s meta-actor;

with the focus on memory-access efficiency, if TA
keeps an account of the frequency of method calls, it
becomes easy to state method M import conditions and
simulate a cache;

with the focus on run-time efficiency, methods
specialization according to the frequency of calls with
constant arguments (e.g. through currification and
partial evaluation [23]) appears as another avenue.

These incremental approaches can be completed by
decremental ones, in order to maintain a "decent” number
of methods (e.g. trow-away compiling [8]).

Adaptability becomes a new parameter for efficiency:
run-time efficient systems unable to adapt need more
revision than slower adaptive ones. A metalevel
architecture seems the cleanest and the most flexible
implementation, since it splits inherent behavior
computation from computation related to adaptation, thus
making easier dynamic changes of either of the aspects.
Import conditions may as well dynamically evolve with
the environment where A or TA perform, according to the
work load of other actors or to the available processors.

The "strength” of the causal link between meta and
denoted levels determines concurrency. A tight coupling
prohibits any incoherence between both, while a loose one
gives more room to their concurrent evolution. In its
current status, ReActalk relies on a tight coupling.

3.2.2 When adaptation decision
belongs to the denoted level

making

What if adaptation is activated only under special
circumstances, such as a fall of efficiency. In OS, this
approach is particularly adequate for dealing with
breakdowns although breakdown-driven adaptation shifts
its recognition at the denoted level.

For instance, in case of agent overload or breaking,
ReActalk's message-processing and relations reification
allows to solve this kind of breakdown by re-routing the
message stream towards another agent until the deficient
one is again operational.

Another way of adapting to breakdown problems
consists in changing the viewpoint embodied in the
agent's reified representation of the external world, through
a "zoom process”, grouping or ungrouping entities and
relations in order to find a vantage point:

* azoom out (synthesis) results in a simplification
by combining several individuals and/or relations
into a whole, hiding aspects, absorbing details, but
making local a global perspective on the
problematic situation ;

* azoom in (analysis) ungroups an organization into
its components, reifying details.

ReActalk's organizational approach is fairly well suited
to support this type of shifts, while self-reference and
causal link make reflective operations an ideal framework
for such adaptation mechanisms.

3.3 Should adaptation be an individual or a
collective endeavor ?

Individual and collective aspects of adaptation are
indissociable. This assumption may be illustrated by a
human metaphor.
3.3.1 Analysis: individuals
organizations

from to

For an observer, a human being is a whole whose
activities such as thinking or sleeping are performed by a
single, indivisible individual. Illness (breakdown) induces
an adaptation process and eventually a change in the
person's internal structure or behavior. Traditional
medicine provides hooks to look at individuals as
“collections of organs”, denoting individual selves. Self-
diagnosis reifies organs and their relations and, by
zooming into individuals, provide a different anatomical
representation, changing individuals into “dividuals”. The
medical metalevel render explicit representations of
anatomical aspects of the individual hidden to the world
under normal circumstances and thus allows surgery to be
performed. Within ReActalk, surgery consists in replacing

119

a failing agent by a brand new one, or in defining new
relations inside a meta-actor.

3.3.2 Synthesis:
individuals

from organizations to

Whenever a detailed anatomical analysis is not
successful for establishing a diagnosis, a shift of
viewpoint becomes necessary: synthesis combines organs
in systems such as nervous, digestive, etc. and provides a
different viewpoint, that might give the adequate
perspective. The denoted level is now the groups of
organs, while the meta-metalevel proceeds to a grouping
according to specific criteria. There is then a shift at the
metalevel from n denoted entities to m reifying ones, with
m < n. From then on, a given organic system is
considered as a whole. In this case a diet change could
appear as an alternative to surgery. ReActalk would
translate this by a new mailBoxManager rejecting any
message/stimulus forbidden by the prescribed diet.

3.3.3 Analytic versus synthetic approaches
This example brings out some interesting points:
* In a given entity, identifying denoted and meta
levels is merely a question of viewpoint, which
depends heavily of the context. Each context defines

a precise viewpoint whose reification makes local
some information.

When changing 1 entity for n, reflection consists
usually in making explicit some hidden aspects of
the denotation's environment. This operation is
analytic by nature.

When changing n entities for 1, reflection consists
usually in hiding some irrelevant aspects of the
denotation's environment. This operation is
synthetic by nature.

The main stream in reflection favours individual
approaches: any object at a level has its own unique meta-
object at the next level [24] [30]. Nevertheless,
organizational reflection provides a framework suitable for
both analysis and synthesis, supporting different
viewpoints, as well as flexibility and modularity needed
for the implementation of adaptive computer systems:

¢ the analytic approach reifies the components and

their relations, opening the door to internal
restructuring (suppression, addition or replacement
of any component or relations) like surgery or
message stream re-routing would do.

the synthetic approach decreases the number of
entities and, therefore facilitates the interaction
management: it is usually easier to deal with the
interactions among 4 entities than it is for 4000.

3.3.4 Why multiple viewpoints ?

Can there be several meta-actors attached to the same
actor ? It is easier to handle both reflective computations
and infinite tower problems! when there is a single meta-
actor. However, such limitation might tend to shift
narrowness and brittleness from the actor to the meta-
actor: a sole viewpoint would be embodied in the meta-
actors from bottom to top of the tower. In return, several
meta-actors would allow different or even divergent
viewpoints to coexist. Such perspective changes are as
well discussed by Winograd and Flores [32] who think
they are necessary for adaptation.

ReActalk, in its present state, proposes two meta-actors
per actor: the first one analyzes the processing of external
stimuli (messages) by the individual actor's behavior, the
second one reifies the organization (ecosystem) in which
the actor is embedded?.

3.4 On the permanence of changes

Since adaptation leads to self-modifications, a natural
question regards the permanence and the range of changes.
Which factors should decide that a change is definitive or
that an actor should go back to its initial state ? Should
other actors belonging to a same class be touched by one's
modifications ? Again [Bateson, 1979] provides insights,
distinguishing between genetic (changes applied to a
whole species) and somatic control (changes applied 10 a
single individual). Genetic control is more economic in
terms of somatic adaptation mechanisms, but is also more
rigid and lacks reversibility. On the other hand, somatic
control is flexible and reversible, but expensive in terms
of adaptation mechanisms.

ReActalk translates somatic changes by changes within
metalevel hierarchy, and genetic changes by changes
within class hierarchy. This leads to a reformulation of the

pennanence problem:

when should a modification at the meta-actor level
be integrated in the class hierarchy, and therefore be
applied to a class of actors instead of just one ?

Bateson gives a partial answer:

1 To be reflective, a system requires, at least, a
representation of itself, fit for manipulation and
modification. This representation is known as
metasystem. Moreover, any modification of the
metasystem have an immediate effect on the behavior of
the system itself; this link is known as causal connection
between a system and its metasystem. Although it is
tempting to apply to the metasystem the same treatment,
and thus to give it a metametasystem, this approach leads
to an infinite regression known as the infinite tower: the
metasystem is described by a meta-metasystem which
itself is described by...

There is a third one inherited from Smalltalk-80: the
actor’s class reifying its structure.

120

At first glance, there are those cases in which the
Jlexibility would perhaps never be needed after the shift
to the genetic. These are cases in which the somatic
change is an adjustment to some constant
environmental circumstance Those members of a
species that are settled in high mountains may as well
base all their adjustments to mountain climate,
atmospheric pressure,and the like on genetic
determination. They do not need that reversibility
which is the hallmark of somatic change. Conversely,
adaptation to variable and reversible circumstances is
much better accomplished by somatic change, and it
may well be that only very superficial somatic change
is tolerable. [3, p. 170-172]

Through meta-actors and class hierarchies, ReActalk
supplies the tools to explore both genetic and somatic
control.

3.5 On the nature of metalevels: infinite
versus indefinite tower

[...] it seems probable that in most instances of
learning and somatic changem, the number of
levels of somatic control is small. We can
learn and learn to learn and possibly learn to
learn to learn. But that is probably the end of
the sequence. [3, p.178-179]

Since there is nothing in reflection that decides what is
to be reified and what is to be absorbed [27], we claim that
reflection is suited for adaptation. Furthermore adaptation
is not based on infinite towers of reflective metalevels, but
rather on indefinite ones. Lazy creation of metalevels in
ReActalk gives the opportunity to adapt the viewpoint
according to the immediate circumstances. In spite of the
elegance and the attraction of infinite towers, they support
a sole viewpoint, is transmitted from one metalevel to the
next one. Since adaptation depends heavily on the context,
this is a handicap. The fluidity of the real world makes it
hard to know a priori what will be the vantage point for
adaptation.

[16] discusses the pros and cons of three different types
of meta-meta-actors, according to different standpoints on
the meta-actor and its role. The three perspectives proposed
are adaptability, concurrency and information flow. Recall
that the meta-actor which takes care of the actor's self-
representation, is described as an organization in charge of
the actor's message-processing. Further steps of the
construction of the tower raise the question of the meta-
actor's self-representation. Traditional solutions adopt
uniformity as a principle, with the conclusion that both
actor and meta-actor share the same nature. Applied to the
meta-meta-actor, the same principle implies that this one
is an organization in charge of the meta-actor's message-
processing.

However, different perspectives may be convenient
depending on the context:

with the accent on adaptability, the meta-meta-actor
views the meta-actor as an organization, as
illustrated on Figure 1;

with the accent on concurrency, the meta-meta-actor
views the meta-actor as an actor, leading to
architectures such as ABCL/R2 [25].

with the accent on information flow, the meta-
meta-actor views the meta-actor as an "enriched”
Petri net.

3.6 Somatic adaptive processes implemented
within ReActalk.

In this section, we present some adaptive mechanisms
implemented in ReActalk [14]. They help an agent to
adapt to other agents by modifying its model of
computation. So they are devoted to somatic adaptation.

An agent cannot elude stimuli arising from its
ecosystem. Within ReActalk, stimuli are messages. An
agent’s ecosystem consists of the agents it has to
cooperate with. Adaptation makes cooperation easier,
smoothing interactions between heterogeneous agents.

A newborn agent operates according to one of the
predefined messages interpreter. Such an interpreter
embodies part of messages semantic. For instance, in the
implementation of ABCL [33], the prefix now calls for a
synchronous communication, whereas the ACTORS
model of computation [1] does not support this protocol.
Thus by means of messages, an agent may ask for
specialized protocols for cooperation, possibly unknown
to the addressee. When an agent does not understand a
message, a reasonable interpretation is to ascribe the
failure to its interpreter. Modifying the interpreter could be
the appropriate solution. In this scheme, breakdown-driven
adaptation leads to the modification of the agent’s self.

Through reification, reflection explicits an agent’s
interpreter. Within ReActalk, abilities inherent to an
interpreter are abstracted in genes. A gene describes a
partial organization of agents devoted to a specific aspect,
e.g. the agents and relations necessary to implement the
semantic of the prefix now. The complete organization
acting as the interpreter is assembled from such genes. In
order to achieve this assembly, we developed a mechanism
called hybridization. Hybridization, instead of simply
composing organizations, literally merges them together:
solely the most specialized agents and relations are kept.
The hybrid organization usually exhibits a combination of
the abilities of the parent organizations, but sometimes
new abilities emerge.

Therefore, when a message is not understood, an agent
consciously triggers adaptive mechanisms. This triggering
is implemented with the exceptions handling system of
Smalltalk-80. Firstly a signal is raised and the interpreter
is reified. The faulty message is then used to search for
genes able to interpret it. Hybridization dynamically
proceeds and modifies the agent’s interpreter. Finally the
faulty message is sent again. In that case, adaptation

121

mainly relies on analysis, i.e. the decomposition of the
self into an organization.

Conversely, in order to compensate the fattening effects
of hybridization, we have also implemented the inverse
operation, namely deshybridization. It allows an agent to
get rid of obsolete somatic changes. Deshybridization is
unconsciously activated by a surveillance process grafted at
the metalevel. Deshybridization is completed by a reflect
operation which annihilates the reification.

Thus an agent adapts its somatic abilities according to
the agents with which it interacts and these abilities are
removed when they are no more necessary. In this way,
somatic adaptation smooths heterogeneity.

4 Adaptation through modification of
one's environment

Section 2 mentioned adaptation through modification of
one's environment as an alternative to adaptation through
change of one's behavior. ReActalk supplies as well the
tools for the exploration of this avenue.

On the one hand, an actor can act on its environment by
communicating with the actors located at its own level.
The environment is perceived as an ecosystem, whose
components are members and relations. Organizational
reflection makes the reified ecosystem accessible to any of
its entity. Thus, an actor can know about the others in the
same ecosystem.

On the other hand, an entity can act directly upon its
environment structure, now accessible. Organizational
reflection applied to ecosystems combines reification and
causal link to actualize the modifications made to the
environment by one of its entities.

5 Related works

Several research projects apply reflection to actors and/or
organizations. Probably the first to explore reflection in
concurrent programming is ABCL/R [29]. ABCL/R
exemplifies a trend where every actor has its own meta-
actor which centralizes reified aspects (both structure and
computation). ReActalk breaks away with this trend in
allowing multiple metarepresentations for an actor:

* its meta-actor : a metarepresentation expressing the
actor’s autonomy by reifying computations;

its class : a metarepresentation that regards the actor
as a structure;

its reified ecosystem : a metarepresentation
expressing the agenthood of the actor.

So these metarepresentations reify in a causally-connected
way a standpoint on the actor.

Furthermore unlike ABCL/R where the reification of
computations lies in the the meta-actor’s script, within
ReActalk the reification of computations is distributed

through an organization taylorizing message processing.
Therefore when reflective computations proceeds from
within the meta-actor through the script in ABCL/R,
reflective computations are performed through
organizational modifications and the management of
messages is done by agents in the ReActalk.

Mering IV [11] is a reflective system for DAI that also
supports multiple metarepresentations for an actor: one in
charge of the structure reification and one in charge of the
computations reification. Reflective message management
relies on hard-wired reflective methods. Nonetheless these
infinite towers focuses on the actor taken in isolation,
occulting organizational questions. As in ABCL/R, it is
not possible to change the number of entities taken into
account for reflective shifts from level to metalevels, as
ReActalk can do.

Due to the lack of a global view on computations
(coordination of groups of actors and resources sharing),
ABCL/R2 introduces the group concept within ABCL/R
and applies reflection on such groups. The brand-new
meta*-groups are essentially concerned with computation
(evaluation, scheduling...). A metagroup is made of

e the meta-objects of the base level objets of the
group;

the group kernel objects (group manager, evaluator
and meta-object generator) which are the causally-
connected self representation for the structure and
computation of the denoted group;
¢ other metalevel objects, e.g. a scheduler

In ABCL/R2, there is no reification of interactions as
ReActalk does through communication protocols. We
believe that communication protocols are important
because they reify interactions, a key concept for
organizations and ecosystems, thus forming a privileged
lever to actualize and manipulate the rules regulating an
ecosystem. In fact, meta*-groups in ABCL/R2 are
exclusively concerned with the management of
computational resources, €.g. processors, by coordinating
among the meta-objects of the members and the group
kernel objects. In ReActalk, the reification of ecosystems
is a keystone to adaptive behaviors. For instance, under
ReActalk philosophy, a processor is simply a base level
agent within a “computational” ecosystem and its use is
regulated by the rules made explicit within the reified
ecosystem. Therefore the way of modelling systems is
very different from ABCL/R2 and the reification of
ecosystems goes far beyond the notions of groups and
metagroups embedded within ABCL/R2.

6 Open problems and future works

Respect to the fitness of ReActalk towards adaptation,
many paths still remain open. This section briefly exposes
some: multiple self-representations, genetic versus
somatic control and environment modification.

122

6.1 On the
perspectives

cohabitation of multiple

As pointed out in [26), there are many notions of self.
Furthermore reified aspects and absorbed aspects depend on
the context and the intention. Many systems are designed
to support multiple perspectives on the self [20] [9].
ReActalk proposes and implements two viewpoints:
individual (structure and computation) and organization.

To go further, ReActalk should be provided with a
mechanism bound to integrate multiple perspectives. The
combination of self-representation and multiple
perspectives on one's self lead to a coreferential approach
[5] of metalevels for tightly coupled systems. The micro-
theory concept [17] would be helpful for weakly coupled
systems where some incoherences may be tolerate.

6.2 Genetic versus somatic contrel

Through class and meta-actors hierarchies, ReActalk
supplies the tools to explore both genetic and somatic
control. It is then a matter of seeing how the related
reflective towers can model such kind of control.

6.3 Adaptation through modification of one's
environment

In order to adapt, an individual can change its
environment's reification. Due of the causal link, it
modifies as well the environment itself. This leaves
several questions unanswered:

* what is the nature of admissible changes ?

who is allowed to make these changes ?
¢ when and how to proceed in order to maintain some
caherence ?

Maybe the answers will teach us a lot on the
modification of our own environment.

6 Conclusion

This paper has presented the design principles behind
ReActalk: ReActalk uses an organizational approach of
reflection and is meant to provide a framework for the
study of adaptation in the context of agents and OS. Since
OS interact with a fluid reality, they must adapt in order
to mitigate the consequences of the narrowness and the
brittleness of traditional systems. Accordingly, departing
from the trend that uses reflection to provide users with
hooks to open and customize the programming language
and environment, ReActalk uses reflection as a framework
for adaptive processes evolving in a dynamic environment.

We have shown, on the one hand, how reflection can
implement adaptive processes, and, on the other hand,
how adaptive mechanisms can be actualized in ReActalk.
We have pointed out two ways of performing adaptation,

based on Gregory Bateson's work: adaptation, viewed as a
modification of one's behavior to circumstances, and
adaptation, viewed as a modification of one's environment.
We have also outlined how to get from Bateson's view on
adaptation to an architecture suited for adaptation. Finally,
we have shown that the organizational approach of
reflection implemented in ReActalk allows both types of

adaptation.
7 Acknowledgments

We are indebted to Mr Brian Smith and Mr Les Gasser
for their insightful comments. Our discussions with them
have been the source of many changes, refinements and
even more, deeper understanding.

8 References

[1] Agha, G., Actors: A Model of Concurrent Computation
in Distributed Systems, MIT Press, 1986, 144 p.

[2] Bateson, G., Vers une écologie de l'esprit, vol. 1-2,
Paris, Editions du Seuil, 1977.

[3] Bateson, G., Mind and Nature: a necessary unity,
Toronto, Bantam Books, 1979.

[4] Beer, R. D, Intelligence as Adaptative Behavior, New
York, Academic Press, 1990, 213 p.

[5] Bourgeois, R., ICEO : Intension, Coréférence et Objets
dans la fédération de formalismes de spécification,
Université Paris 6, France, 1990.

[6] Bouron, T., J. Ferber and F. Samuel, MAGES: a Multi-
Agent Testbed for Heterogeneous Agents, in
Decentralized A.I. 2, Demazeau, Y. and J.-P. Miiller eds,
Amsterdam, North Holland, 1991, pp. 195-214.

[7] Briot, J.-P., From Objects to Actors: Study of a Limited
Symbiosis in Smalltalk-80, LITP 88-58 RXF,
Université Paris 6, 1988, 52 p.

[8] Brown, P. J. Throw-away Compiling, Software
Practice and Experience, vol. 6, 1976. pp. 423-434.

[9] Ferber, J., Objets et agents: une étude des structures de
représentation et de communications en Intelligence
Artificielle, thése de doctorat d'état, Université Pierre et
Marie Curie, June 8, 1989, 492 p.

[10] Ferber, J., Eco-Problem-Solving: How to solve
problems by interactions, report 05/90, LAFORIA,
Institut Blaise Pascal, France, January 1990, 18 p.

[11] Ferber, J. and P. Carle, Actors and Agents as Reflective
Concurrent Objects: a Mering IV Perspective, IEEE

Transactions on Systems. Man. and Cybernetics, 1991,
vol. 21, no 6, pp. 1420-1436.

[12] Gasser, L., Social Conceptions of Knowledge and
Action: DAI Foundations and Open Systems Semantics.
Artificial Intelligence, 1991, vol. 47, no 1-3, pp. 107-
138.

[13] Gasser, L. and T. Ishida, A Dynamic Organizational
Architecture for Adaptive Problem Solving, AAAI-91
Proceedings, July 14-19 1991, pp. 185-189.

[14] Giroux, S., Agents et systémes, une nécessaire unité,
Ph. D. thesis, University of Montreal, 1993.

[15] Giroux, S. and A. Senteni, Reactalk, a Reflective
version of Actalk, in [19], 5 p.

[16] Giroux, S. and A. Senteni, Taylorizing the Behavior of
an Actor: an Organizational Approach of Computational
Reflection, East EurOOPe Proceedings, September 17-

123

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]
(28]

[29]

[30)
[31]

[32]

[33]

20, Bratislava 1991, Czecho-Slovakia, SIGS
Publications, Inc. New York, pp. 12-26.

Hewitt, C., Open Information Systems Semantics for
Distributed Artificial Intelligence, Artificial

Intelligence. 1991, vol. 47, no 1-3, pp. 79-106.
Ibrahim, M. H., Informal Proceedings of
ECOOP/OOPSLA '91 Workshop on Reflection and Meta-
level Architectures in Object-Oriented Programming,
Ottawa, Canada, Oct. 22, 1990.

Ibrahim, M. H., Proceedings of the OOPSLA '91
Workshop on Reflection and Meta-level Architectures
in Object-Oriented Programming, Phoenix, Arizona,
Oct. 7, 1991, Xerox Technical Report, 1991.

Ishikawa, Y., and H. Okamura, A New Reflective
Architecture: AL-1 Approach, in [19] 5 p.

Kiczales, G., J. des Rivitres and D. G. Bobrow, The Art
of the Metaobject Protocol, The MIT Press, 1991.
Langton, C. G. ed., Artificial Life, Redwood City , CA,
Addison Wesley, 1989, 655 p.

Launchbury, 1., A Strongly-Typed Self-Applicable
Partial Evaluator, 5th Conference on Functional
Programming Languages and Computer Architecture,
Aug. 1991, Springer-Verlag, LNCS-523, pp. 145-164.
Maes, P., Concepts and Experiments in Computational
Reflection, OOPSLA '87 Proceedings, Orlando, Florida,
October 4-8, pp. 147-155.

Matsuoka, S., T. Watanabe and A. Yonezawa, Hybrid
Group Reflective Architecture for Object-Oriented
Concurrent Reflective Programming, ECOOP '91, July
15-19, Geneva, Switzerland, Springer-Verlag.

Smith, B. C., Varieties of Self-Reference, 1986
Conference on Theoretical Aspects of Reasoning about
Knowledge, Monterey, CA, pp. 19-43.

Smith, Brian C., What do you mean, meta? in [18).
Wand, Y. and Carson W. C., An Approach to
Formalizing Organizational Open Systems Concepts,
Conference on Organizational Computing Systems,
Nov. 5-8, 1991, Atlanta, Georgia, SIGOIS Bulletin,
vol. 12, no 2-3, pp. 141-146.

Watanabe, T. and A. Yonezawa, Reflection in an Object-
Oriented Concurrent Language, OOPSLA '88, San Diego,
CA, Sept. 25-30, vol. 23, no 11, Nov. 1988, pp. 306-
315.

Watanabe, T. and Akinori Y., An Actor-Based Meta-
level Architecture for Group-Wide Reflection in [18].
Watzlawick, P., J. H. Beavin and D. D. Jackson, Une
logique de la communication, Ed. du Seuil, 1972.
Winograd, T. and F. Flores, Understanding Computers
and Cognition: A New Foundation for Design, Addison-
Wesley, 1987.

Yonezawa, A. eds., ABCL An Object-Oriented
Concurrent System, The MIT Press, 1990, 329 p.

