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Abstract. Automatic summary scoring is used very often by summa-
rization system developers to test different algorithms and to tune their
system. We have developed a new approach based on representation
learning, using both unsupervised and supervised learning components,
to score a summary based on examples of manually evaluated summaries.
Our deep learning approach greatly surpassed ROUGE in terms of corre-
lation with Pyramid (content) scores for individual summaries. However,
ROUGE performed slightly better when comparing summarization sys-
tems based on their average score.

1 Introduction

Progress in the field of Text Summarization requires ways of assessing the quality
of summaries. Comparisons and ranking of summarization systems in interna-
tional evaluations like the Text Analysis Conference (TAC) [7] rely first on man-
ual summary scoring. On the other hand, automatic summary scoring is used
very often by summarization system developers to test different algorithms and
to tune their system. Although automatic summary scoring is not as reliable,
it does not require human resources nor a long time to complete, so it can be
repeated as often as necessary.

The best known and most trusted automatic metric for summary evalu-
ation is the so-called Recall-Oriented Understudy for Gisting Evaluation, or
ROUGE [16]. This metric is strictly based on n-gram similarity scores between
a model summary and the summary to be evaluated.

In this paper, we describe a new approach to automatic summary scoring
based on representation learning, using both unsupervised and supervised learn-
ing components, to score a summary based on examples of manually evaluated
summaries. This is based on recently introduced algorithms for deep learning
of representations [12, 11, 1], and is based on a novel architecture for comparing
the learned representations associated with two preprocessed summaries, in the
spirit of so-called Siamese Networks [5]. Like ROUGE, it also relies on a com-
parison between a model summary and the summary to be evaluated. This is
accomplished in three steps. First, we preprocess the summaries so that they
can be expressed as a vector in term-space. The second step attempts to learn
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a mapping from the term-space into a concept-space representation of much
smaller dimensionality, using an unsupervised auto-encoder [19, 4, 11] trained on
a large corpus. That learned intermediate lower-dimensional representation is
more abstract and more oriented towards semantics than the raw term-space
representation, because combinations of words that have a similar meaning tend
to be represented by nearby vectors in that space, in a way similar to Latent
Semantic Analysis [8]. Finally, the third step stacks a regression neural network
on top of the attribute-wise comparison obtained from the concept-space repre-
sentations of the summary to be evaluated and of the model summary.

An important advantage of many Deep Learning algorithms is that they
can exploit large quantities of unlabeled data to learn better representations [1],
that can generally be more easily transferred across different domains [2] or com-
bined with labeled data for semi-supervised learning [24]. The basic hypothesis
explaining these earlier successes [9] is that for the type of tasks at hand (and
presumably most tasks considered for AI), representations h(x) of inputs X = x
that are useful at characterizing P (X) are useful at characterizing P (Y |x) (where
Y ’s are target labels to predict).

Section 2 will describe existing summary evaluation metrics. We give the
details of our approach, including how we implemented it, in section 3. Section
4 discusses our results, and we conclude in section 5.

2 Summary Evaluation Metrics

2.1 Direct Manual Metrics

Direct manual metrics produce human-made scores given by subjective criteria.
They are generally scaled by integers between 1 and 5 or 1 and 10. The most
common, called Overall Responsiveness in the TAC conferences, answers a ques-
tion such as “Is this a good summary of the document(s)?” and “How much
would you pay for this summary?”. The other common measure is a linguistic
quality score, which assesses a summary’s grammaticality, as well as its focus,
coherence, etc.

2.2 Pyramid

The Pyramid metric [17] is an indirect manual evaluation metric of a summary’s
content. Human assessors read each model summary and determine each one’s
Semantic Content Units (SCUs) – the ideas or statements of a text. The Pyramid
content score of a summary to be evaluated is given by the recall of model SCUs
present, weighed by the number of model summaries that contained each SCU,
if more than one model was available. The Pyramid score is the one we attempt
to predict with our approach.

2.3 ROUGE

ROUGE [16] is an automatic evaluation metric that computes an n-gram similar-
ity score between the model summary and the summary to be evaluated. Several
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types of ROUGE measures exist, and the one with the highest correlation with
manual scores is ROUGE-2 recall – the recall of model summary bigrams. Very
high correlations between manual metrics and ROUGE have been observed [6].

3 Our Approach

This section has five subsections as follows. First, we describe the data sets
used for training and testing. Then, we describe the three steps of our approach,
namely preprocessing the documents into a binary vector in term-space, learning
a representation of this term-space into a concept-space, producing a compar-
ative vector (comparing the attributes of the two summaries), and training a
neural network to predict the Pyramid score. These are described at a high
level, with the last subsection giving technical details of the implementation.

3.1 Data Sets

Most machine learning approaches require large data sets to perform well, and
examples of manually scored summaries are relatively rare. The TAC conferences
offer a good source of such data and we used the 2008 and 2009 sets because
they were recent, had short (100-word) summaries, and were both done using the
same task description, namely query-focused, multi-document, 100-word sum-
maries. Together, they contained roughly 4,000 manually evaluated summaries
(excluding update summaries which respond to a different task), completed on
92 document sets. The Pyramid scores of these summaries were normalized to
be in the range [0.001, 0.999] for easier use by our algorithm.

The documents for which those summaries were written are NewsWire arti-
cles found in the Linguistic Data Consortium’s AQUAINT-2 corpus [23], which
contains more than 900,000 articles from six different news agencies. The auto-
encoder is trained using this corpus.

3.2 Preprocessing

It is desirable to represent data by its meaningful features for input to a machine
learning algorithm. An easy way to do this for text is to use the so-called bag-
of-words approach of representing a text by the terms it contains, regardless of
the number of times each term occurs.

In this formalism, each document is represented by a binary vector of size
equal to the number of terms in a given vocabulary. Each term in the vocabulary
has an index in the vector, which corresponds to a dimension in this vector-
space, or term-space. A document is thus a point in term-space, defined as a
vector with 1’s in dimensions corresponding to terms it contains, and 0’s in all
other dimensions.

Not all terms are important, however, and it is computationally impracticable
to deal with a very large vocabulary, so we had to significantly reduce its size.
First, the Porter Stemmer [18] is used on the terms, to represent identically
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all terms of the same family. A vocabulary of 850,000 unique stems was initially
found in the AQUAINT-2 corpus. All numbers and amounts were projected onto
a single tag, and all terms that contain special characters were removed, taking
care of a large portion of this number. Stop-words were also taken out, in order to
prevent the noise the most common English words would likely create. Finally,
we kept only the 10,000 most frequently occurring stems in the AQUAINT-2
corpus, a number high enough to cover terms from a wide range of subjects.
This corresponds to terms with a minimum frequency of at least 2,500 within
the 900,000 articles of the corpus.

3.3 Deep Learning and Auto-Encoder for Dimensionality Reduction

One of the basic ideas behind Deep Learning algorithms [1] is to exploit unsu-
pervised learning to learn intermediate representations that can then be used in
a supervised learning framework. In our work, an auto-encoder [11] is used to
reduce the dimensionality of the term-space vectors, so that they can be rep-
resented in a much smaller concept-space. Auto-Encoders are a special type of
multi-layer neural network with a hidden layer of small dimensionality, which
represents an encoding that we are trying to learn. In our case, the encoding can
be interpreted as a concept-space, made of learned non-linear transformations
of the term-space, which can express the most essential features of a document.
The encoding is learned by using the large AQUAINT-2 corpus for input. An
important characteristic of such representation-learning algorithms is that they
can exploit large quantities of unlabeled data. When they are trained on a bag-
of-word, they learn a distributed semantic representation for each word [20], in
which semantically similar words (or bags-of-words) are associated to nearby
vectors.

The process is illustrated in Figure 1. The encoding function f is applied
to the term-space vector x representing a corpus document in order to produce
the concept-space vector y. f consists of a linear transformation followed by a
non-linear function. Next, function g decodes y back to a vector in term-space
by applying again a linear transformation followed by a non-linear function. The
auto-encoder is trained with the goal of learning the parameters of functions f
and g, so that the reconstructed vector x̃ is similar to the original vector x.

To assess the quality of the encoding and decoding, a loss function L matched
to the non-linearity compares x and x̃. The parameters of the auto-encoder are
set to minimize the reconstruction error on the training data.

Because the input vectors are binary and sparse (95% of the dimensions
contain zeros), we apply a sampling algorithm to speed up the processing. All
dimensions that contain ones are sampled, as well as the same number of dimen-
sions containing zeros, selected randomly. Reconstruction and error gradients are
only computed for the sampled dimensions, i.e., no gradient is back-propagated
for the non-sampled dimensions. To our knowledge, this sampling mechanism is
novel in the context of auto-encoders, and it allowed us considerable speed-up
of training time, around 8-fold. This is a major advantage to explore such un-
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Fig. 1. Architecture of the auto-encoder to learn an encoding y in concept-space of an
input x in term-space.

supervised learning algorithms in the context of the large number of training
examples used (around a million).

Four values for the number of dimensions of the concept-space were tested:
200, 400, 600 and 1,000. A lower average reconstruction error for the auto-
encoder, as well as a better performance when this encoding is used as part of
the regression process were observed when the input is encoded in a concept-
space of 600 dimensions.

Although the reconstruction error criterion of an auto-encoder does not cor-
respond to training a probabilistic model of the input vectors, a slight modifica-
tion of it, called the denoising auto-encoder [22], and in which the auto-encoder
takes a corrupted input and tries to reconstruct the original clean input, does. A
variant of the denoising auto-encoder corresponds [21] to applying a regularized
Score Matching criterion [13] to a particular Restricted Boltzmann Machine [11,
12]. In our experiments we found that the addition of this corruption process
helped, but only marginally, so results with the simpler ordinary auto-encoder
are reported here.

3.4 Supervised Regression on Top of Learned Representation

The objective is to compare a summary s with a model summary m. On top
of the representation learned by the auto-encoder for the summary s and for
the model summary m, we first compute a “comparison” layer that performs an
element-wise comparison between the two summaries’ concept-space attributes,
on top of which we then stack a supervised multi-layer regression neural network,
to predict the summary Pyramid score p. The layout of the network is illustrated
in Figure 2.
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v = log(f(m)/f(s))

p

Fig. 2. Deep Learning architecture for regression, with three steps: encoding into
concept-space, concept comparison and regression layers.

The input layer contains the two preprocessed summaries to be compared,
represented by term-space vectors. The encoding function f learned by the auto-
encoder is applied on both term-space vectors to reduce them to their concept-
space representation.

The layer v compares the values of f(s) and f(m) for each concept (how
strongly each concept is present in the summary and the model). For each di-
mension in concept-space, v is computed with the element-wise logarithm of the
ratio of f(s) and f(m).

The remainder of the architecture is a standard one-hidden layer neural net-
work for regression. The size of the hidden layer h was set to 1,000, because
a much higher number of hidden units would have entailed a large increase in
computing time yielding meager gains in performance.

Architecture variants. Four variants of the architecture have been considered, in
order to test two hypotheses. Firstly, the impact of the auto-encoder unsuper-
vised pre-training was tested. The function f of the architecture would either be
initialized randomly, or by the learned function of the auto-encoder in order to
test this hypothesis. Secondly, we tested whether or not the parameters of the
concept-space encoding function f should be adapted during training or left un-
touched. Adjusting the parameters of f during training severely slows down the
execution. Our experiments showed that there is always a very significant gain
to use the auto-encoder-learned concepts rather than random ones, even when
those can be adjusted during training. Also, statistical tests failed to observe a
significant difference between keeping the learned concepts fixed and adjusting
them to new data during training. These findings are different from those of
previous work using auto-encoders in deep architectures [3, 14], which observed
better results when all the parameters could be adjusted to the data.

22



Deep Learning for Automatic Summary Scoring 7

3.5 Technical Details about the Implementation

Hyper-parameters For both the auto-encoder and the regression component,
we tested several values for each of the hyperparameters of the algorithms, us-
ing a grid search. These include the size of the hidden layers and variations of
the algorithms themselves, as already mentioned, but also the learning rate for
gradient descent, its rate of decay and the number of iterations for early stop-
ping. The gradient descent learning rate was taken as �t = �0τ

t+τ , where �0 is the
initial learning rate and τ controls the rate of decay (asymptotically in 1/t, to
guarantee convergence).

Auto-Encoder The two layers of the network are computed using y = f(x) =
tanh (Wx + b) and x̃ = g(y) = σ (W�y + b�), where σ is the logistic sigmoid.
Therefore, f is defined by a linear transformation matrix W and two bias vectors
b and b�. We used tied weight matrices, so that W� = WT . The loss function
used is a cross-entropy between the reconstruction and the original vector, given
by L(x̃,x) = −mean(x log(x̃) + (1−x) log(1− x̃)) where the mean is taken over
the elements of x. The matrix W is initialized randomly and uniformly, such
that Wij ∈ [− 1√

ū
, 1√

ū
], with ū the average number of ones in x. The bias vectors

were initialized with b ∈ [0, 2] and b� ∈ [−0.5, 0.5]. These values were chosen to
stay close to inflection points of the non-linear activation functions of each layer,
as suggested in LeCun [15].

Comparison Layer and Regression Component The equation used for the
comparison layer is slightly different from that in Figure 2, to avoid taking the
logarithm of zero:

v = log
�

f(m) + 1 + �

f(s) + 1 + �

�
, (1)

where � is 10−3. The regression layers are computed similarly to f and g. The
hidden units h are computed by taking a linear transformation of v and applying
a hyperbolic tangent. The score p was computed by a linear transformation of
h and applying a logistic sigmoid activation function. The loss function is the
Kullback-Liebler divergence between the predicted score and the target Pyramid
score. The initialization of each matrix element for all layers was in the uniform
interval

�
−

�
6

ni+nj
,
�

6
ni+nj

�
, with ni and nj the number of units of the layer

below and the current layer. All biases were initialized to 0.

4 Results and Analysis

4.1 Algorithmic Performance

Auto-Encoder The encoder was trained on 800,000 documents randomly se-
lected from the 900,000 articles contained in the ACQUAINT-2 corpus. The
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Correlation with Pyramid scores

Pearson Spearman Kendall

Deep Learner 0.786 0.782 0.591
ROUGE-2 0.617 0.591 0.427

Table 1. Correlation coefficients between our Deep Learning approach and Pyramid,
and between ROUGE-2 and Pyramid (n = 2288), for individual summary predictions
(comparing a single pair of summaries).

remaining 100,000 documents were set aside for testing purposes. The recon-
struction error achieved by the auto-encoder on this test set is a cross-entropy
of 0.134. This could for example be achieved by predicting (on average) a value
of 0.13 for the dimensions of terms that did not appear in the input document,
and predicting 0.87 for the dimensions of terms that did appear in it.

Regressor An 11-fold cross-validation was performed to evaluate the quality
of the regression. A single fold consists of a training set including all of the 2008
TAC data and 10/11th of the 2009 data. The remaining 1/11th of the 2009 data
constitutes the test set.

The mean absolute error between the predicted score for a summary and the
actual Pyramid score in the test set is 0.085. Note that, although the scores are
between 0 and 1, most of them are fairly low, with a mean of 0.25 and a standard
deviation of 0.17, as can be observed in Figure 3 below.

4.2 Intrinsic Evaluation

In the language of Galliers and Spärck Jones [10], an intrinsic evaluation is re-
lated to a system’s objective, whereas extrinsic evaluation is interested with a
system’s actual function. Because our objective is to simulate the Pyramid scores
for evaluating summaries, it is interesting to compute correlation coefficients
between our predictions and Pyramid scores of the test set. These correlation
coefficients serve here as an intrinsic evaluation method. Table 1 shows our cor-
relation with Pyramid and compares it with ROUGE’s. Figure 3 plots all the
data points for our predictions and ROUGE’s.

These results are very satisfactory, as they show that our approach tends
to rank summaries according to their content much better than ROUGE does.
Although the correlation coefficients for individual comparisons are not very
high compared to the correlation coefficients for a whole system (Table 2), they
show a decent level of performance for an automatic evaluation metric. More
importantly, there is a surprisingly large improvement in individual summary
assessment when compared to ROUGE, a 32% relative improvement in Spear-
man correlation, going from .591 to .782 (see Table 1).
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Fig. 3. Plot of the predictions from our Deep Learning approach and ROUGE-2 against
Pyramid scores, for each of the 2288 summaries evaluated for testing. A large proportion
of points have a Pyramid score of 0.

Correlation coefficients between system averages

Pearson Spearman Kendall

Deep Learner 0.946 0.898 0.751
ROUGE-2 0.972 0.942 0.803

Table 2. Correlation coefficients between per-system averages (n = 52).

4.3 Extrinsic Evaluation

In practice, evaluation metrics are not used to rank single summaries, but sys-
tems, or different configurations of a system. This is where automatic metrics
like ROUGE are most useful: they allow the fine-tuning of a system, possibly
iteratively, without having to manually evaluate the many summaries produced,
or to even read any of them. The 2009 TAC data comprised summaries written
by 52 automatic systems, so we averaged the scores for each system, over the 44
document sets. This was done for both our approach, Pyramid and ROUGE.

As table 2 shows, ROUGE averages are more correlated to Pyramid averages
than our approach’s averages are. That is, given many examples of two sum-
marization systems’s output, ROUGE-2 predicts slightly more accurately which
one is better on average than our approach does. Figure 4 shows the actual data
points for each system.

Moreover, this extrinsic discriminative power can be evaluated directly using
Welch t-tests between pairs of systems. This is a way to verify how our approach
and ROUGE rank any pair of systems, as compared to how Pyramid ranks them,
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Fig. 4. Plot of averages of the predictions from our Deep Learning approach and
ROUGE-2 against Pyramid scores, for each of the 52 evaluated systems.

Discriminative power between systems

Agreements Disagreements Contradictions

Deep Learner 1107 219 0
ROUGE-2 1124 202 0

Table 3. Number of agreements, disagreements and contradictions between an ap-
proach and Pyramid, from Welch t-tests conducted over all possible pairs of summa-
rization systems.

using appropriate statistical tests. From two distributions A and B of predicted
scores on two summarization systems, we verify if we observe a statistically
significant difference between them using a Welch t-test. The same is done with
the distribution of Pyramid scores. An agreement is when both tests produce
the same result, namely that A and B are indistinguishable, that A is greater
than B or the opposite. A disagreement is when one test shows no significant
distinction while the other believes there is one. Finally, a contradiction occurs
when one test shows that A is better than B and the other shows the opposite.

Ultimately, it is difficult to understand why our system has better intrinsic
performance than ROUGE but slightly inferior extrinsic performance. There
could have been some sort of noise-canceling effect for ROUGE that is less
present with our approach.

5 Conclusion

We have introduced a way to speed-up training of unsupervised auto-encoders
that learn a semantically beneficial representation of concepts from the given
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term-space input, based on a sampling approximation of the training criterion.
We have shown that an implementation of Deep Learning regression for summary
evaluation scores can substantially improve on ROUGE at determining which
of two summaries is better, yielding a 32% relative improvement in Spearman
correlation, going from .591 to .782. On the task of determining which of two
systems are better, and using only a simple averaging aggregation, performance
was slightly worse than ROUGE-2 recall. This slightly inferior performance on
per-system averages might come from the overspecialization of using a machine
learning approach. The (intrinsic) goal that we set out for our approach was to
predict Pyramid scores as best as possible for single observations. No specific
learning of how to score systems given many example outputs was made, even
though it is what most summarization developers actually need. With better
assessment at the individual summary level, we believe that there is a great
potential to extend these results to the system-level by better aggregation and
training methods focused on improving the system-level predicted performance.
For this purpose, it would be interesting to explore ways to design a machine
learning algorithm which takes a set of input summaries and outputs something
better than averaging the score predictions. This could be done by adding an
extra layer to the architecture, or by running another algorithm to learn to
combine scores efficiently for ranking purposes.

Another variant which should be explored is the insertion of an absolute
value computation after the logarithm in equation 1. This would guarantee that
the regression is invariant to switching the order of its two input summaries m
and s, and v would measure the absolute discrepancy between various aspects
of the summaries captured by each of the dimensions of f(m) and f(s).
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