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Abstract� This paper describes and evaluates a parallel program for determining the three�
dimensional structure of nucleic acids
 A parallel constraint satisfaction algorithm is used to
search a discrete space of shapes
 Using two realistic data sets� we compare a previous sequential
version of the program written in Miranda to the new sequential and parallel versions written
in C� Scheme� and Multilisp� and explain how these new versions were designed to attain good
absolute performance
 Critical issues were the performance of �oating�point operations� garbage
collection� load balancing� and contention for shared data
 We found that speedup was dependent
on the data set
 For the 
rst data set� nearly linear speedup was observed for up to �� processors
whereas for the second the speedup was limited to a factor of ��
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�� Introduction

Note� this paper is slightly older than the version published in

LASC �only the formatting has changed��

The work described here is part of an ongoing project on the determination of the
three�dimensional structure of nucleic acids� Interest in nucleic acids has been fueled
by the recent discovery of their catalytic activity� The detailed knowledge of the
structure of nucleic acids is considered a crucial prerequisite to the comprehension
and eventual manipulation of their function�
For a very large number of nucleic acids� the sequence of nucleotides �the chemical

composition� is known but not the three�dimensional shape� This is due in part
to the great progress in sequencing techniques and� in a related way� to mega
sequencing projects� such as the Human Genome Project ���� There is thus a great
need for sequence analysis tools that infer shape from sequence data�
Most successful approaches to the structure determination problem rely on ho�

mology and computer graphics modeling� These techniques are motivated by the
observation that natural selection has produced families of molecules in which the
sequence of nucleotides has diverged widely� but the three�dimensional structure
and the function have remained the same� The methods use nucleic acids of known
structure from which pieces are extracted that have good sequence homology with
regions of the target sequence� With the help of molecular display programs the
global structure is manually constructed from these pieces� However� structure has
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been determined for few nucleic acids and thus this approach is limited� A review
of RNA modeling techniques is presented in ����
Our approach combines symbolic and numerical computation� as depicted in 	g� 
�

A �symbolic generation� step takes experimental and theoretical data as input and
generates a preliminary pool of structures using the Constraint Satisfaction Prob�

lem �CSP� algorithm described in this paper� A �numerical� step processes this
pool of structures using commercially available energy minimization and molecular
dynamic packages� This two step approach has the virtue of reducing the size of the
search space explored by the energy minimization method� The precision lost in
the symbolic generation model is recovered in the numerical step� In this paper we
discuss the symbolic generation step� Details of the numerical step can be found in
�

�� A sequential version of the system� called MC�SYM for �Macromolecular Con�
formation by SYMbolic generation� �

�� is in use in over 
� sites around the world�
including several academic research centers and two pharmaceutical companies�
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Figure �� Flow of information and processes


The next section introduces some background theory� and following sections ex�
plain the details of our method�

�� Background Theory� Nucleic Acid Structure

There are two types of nucleic acids �see �
�� for a review�� one is deoxyribonucleic
acid �DNA�� which carries the genetic information� and the other is ribonucleic acid
�RNA� which serves as an intermediary in the protein synthesis but also may have
catalytic properties�
The nucleic acids are chains of smaller molecules� the nucleotides �	g� ��� There

are four types of nucleotides� A� C� G� and T for DNA and A� C� G� and U for
RNA� The chains range from small nuclear RNAs� called snRNAs of less than 
�
nucleotides� to large ribosomal RNAs� containing over 
��� nucleotides� The se�
quence of nucleotides is called the primary structure� The second level of organiza�
tion� the secondary structure� arises from the well known fact that nucleotide bases
can interact �base�pairing� and form double�helical domains� Finally� bases from
single�stranded regions can interact in space and further fold the molecule� this de�
	nes the relative placement of double�helical domains and the exact 
D coordinates
of all atoms� the tertiary structure�
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Figure 	� The picture to the right shows the
four types of ribonucleotides� from top to bottom
A�C�G and U
 �� � � nucleotides contain a phos�
phate group linked to a 
ve�carbon�atom sugar
group� which� in turn� is joined to a �at aro�
matic molecule that can be either a double�ringed
purine or a single�ringed pyrimidine
 Since they
contain the sugar deoxyribose� the nucleotides
of DNA are called deoxy�ribonucleotides� while
those of RNA� which contain the sugar ribose�
are known as ribonucleotides� ����
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Figure �� The three levels of organization of nucleic acids
 Figure �a	 shows the linear sequence
of nucleotides
 Figure �b	 shows the two�dimensional folding of the molecule� it shows the juxta�
position in space of distant nucleotides in the sequence �solid lines represent regular base�pairings
while dotted lines show long�range tertiary interactions	
 Figure �c	 shows the tertiary structure

The point of this complicated 
gure is not the details� but only to show that the tertiary structure
is the actual �D structure� including the location of all atoms in the nucleic acid
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The only biologically active RNA class for which tertiary structure has been de�
termined is that of the transfer RNA molecules �tRNA�� which are involved in the
transcription of genetic code �DNA� to protein� The tRNA molecules are gener�
ally �� nucleotides long and are composed of around ���� atoms� Because tRNA
molecules are the only nucleic acids of known structure they are also the bench�
marks for modeling techniques and they will serve as examples in the remainder of
the paper� Figure 
 shows the three levels of organization of the yeast Phenylalanine
tRNA �entry number 
TRA of the Protein Data Bank �����
Researchers have developed reliable methods for determining the primary struc�

ture of proteins and nucleic acids� Those data are collected and made available
by research organizations such as the National Center for Biotechnology Informa�

tion� the latest release ��
��� 
� February 
���� of the NCBI�GenBank Flat File

contains roughly 
��� ���� ��� bases from over 
��� ��� reported sequences� On the
other hand� determining the 
D structure by purely experimental means is still
a time consuming task� This explains why the January 
��� Protein Data Bank
release contains only ���� three�dimensional structures from proteins� DNAs and
RNAs �less than 
� of the known sequences��
Thus� one of the most important unsolved problems in molecular biology is still

the structure determination problem� given a sequence of nucleotides� determine
the three�dimensional structure of the biologically active molecule� But it may not
be possible� at least in the short term� to solve this problem without additional
information�
Additional information on the three�dimensional structure is provided by the

method of comparative sequence analysis and by enzymatic and chemical methods�
Comparative sequence analysis is based on the observation that corresponding RNA
molecules from di�erent organisms adopt a similar set of base�pairings� i�e� the
molecules have a common secondary structure� By comparing the nucleotide se�
quences of RNA molecules it is possible to infer almost all secondary structure
interactions and some tertiary interactions �see Appendix A�
 for more detail��
The use of speci	c enzymes� e�g� enzymes that cut single�stranded regions� and

sequencing techniques provide additional information about the secondary structure
of the molecule� Some chemical agents that are speci	c to the nucleotide bases can
be used to detect paired and non�paired nucleotides�
Thus the structure determination problem can be reformulated as� given a se�

quence of nucleotides and a set of secondary and tertiary interactions� predict the
three�dimensional structure of the molecule� The information from the comparative
sequence analysis and the experimental data can easily be expressed in terms of
constraints and thus have prompted us to encode the problem within the constraint
satisfaction problem paradigm�

�� Constraint Satisfaction Problem Algorithms

The constraint satisfaction problem consists of 	nding assignments of the variables
x�� � � � � xn such that a set of constraints is satis	ed� Each variable is restricted
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to a corresponding domain� i�e� xi � Di� A solution to the problem is a particu�
lar assignment of variables that satis	es the constraints� and the result of a CSP
algorithm is the list of all possible solutions�
The algorithm used here is based on the standard backtracking algorithm� �In

this method� variables are instantiated sequentially� As soon as all the variables
relevant to a constraint are instantiated� the validity of the constraint is checked� If
a partial instantiation violates any of the constraints� backtracking is performed to
the most recently instantiated variable that still has alternatives available�� �
���
The resulting computation is tree�like� Each branch of a node at level i �i � 

at root� corresponds to an assignment of xi that does not violate the constraints�
Because the constraints prune the tree in an arbitrary way there is no guarantee
that the tree is balanced� This becomes a concern when parallelizing the algorithm
because it may cause poor load balancing�
In our application� there is one variable per nucleotide in the input sequence� The

variable speci	es the 
D position� orientation and conformation of the nucleotide�
The conformation corresponds to the internal structure of the nucleotide� which
can vary slightly depending on external factors� A problem with this formulation
is that the domains are in	nite� They can be made discrete and 	nite but they
would have to be very large to attain a useful precision� The strategy we have
adopted is to introduce problem�speci	c information to dynamically reduce the
degrees of freedom of the domains �
��� The motivation is that secondary and
tertiary interactions between nucleotides physically restrict their relative placement
in space� For instance� the placement of a nucleotide restricts the placement of the
next nucleotide in the sequence and any other nucleotide it interacts with� Thus�
xi�s domain is dependent on the other variables�
It is convenient to express Di as a function of the partial instantiation of the

variables �i�e� the lower indexed variables x�� � � � � xi���� These domain generating

functions �DGFs� can therefore only express backward dependencies� In our imple�
mentation� the DGF for Di is a function that receives via its single argument the
current assignment of x�� � � � � xi�� �as a list� and returns a list of the assignments to
be considered for xi� To help de	ne the DGF of each nucleotide we have de	ned a
few parameterized DGFs that capture the more common forms of nucleotide inter�
actions� These parameterized DGFs are the functions� reference� wc� wc�dumas�
stacked��� stacked��� helix��� helix��� and P�O��� The purpose of reference�
for example� is to place the 	rst nucleotide at some arbitrary starting point� whereas
wc is for a �Watson�Crick� type pairing of bases� The parameters of these functions
are� the partial instantiation of variables� a label to name the nucleotide� the type
of nucleotide �and its possible conformations� and the label of the other nucleotides
involved in the interaction� See Appendix A�� for a more detailed description of
these functions and how the user prepares the input to the system� Figure A� gives
the de	nition of the wc parameterized DGF�
The core of the CSP algorithm is the search function shown in 	g� � �for brevity

we only give the Scheme encoding of the algorithm�� This function is called for
each node visited in the search tree� The argument partial�inst contains the
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�� �define �search partial�inst domains constraint��
�� �if �null� domains�
�� �make�singleton�queue partial�inst�
�� �let ��remaining�domains �cdr domains���
��

�� �define �try�assignments lst�
�� �if �null� lst�
�� �make�empty�queue�
�� �let ��var �car lst���
�	� �if �constraint� var partial�inst�
��� �let� ��subsols�
��� �search
��� �cons var partial�inst�
��� remaining�domains
��� constraint���
��� �subsols�
��� �try�assignments �cdr lst����
��� �append�queues subsols� subsols���
��� �try�assignments �cdr lst������
�	�

��� �try�assignments ��car domains� partial�inst�����

Figure 
� Scheme version of CSP algorithm


assignment of variables up to that point �in e�ect� the path to the node from the
root�� domains is a list of the DGFs for the variables remaining to instantiate� and
constraint� is the function for checking the constraints� For each node visited�
search generates the domain for the current variable by calling the next DGF with
the partial instantiation� Each possible assignment for the current variable is then
explored by a recursive call to search and 	nally the resulting solution lists are
concatenated� Queues are used to represent the list of solutions in order to have a
constant time concatenation operation�

�� Program Development and Experiments

The project was carried out in three phases� First� the original Miranda implemen�
tation of the system was translated into Scheme� The system was then parallelized
according to the Multilisp paradigm� Gambit ��� was chosen as the host Scheme
implementation because it features an optimizing native�code compiler and it e��
ciently supports the Multilisp language� In the last phase� the Scheme version was
translated to C in order to evaluate the costs of using Scheme�
The di�erent versions of the program were tested on two realistic problems taken

from a previous paper �

�� The 	rst problem is the anticodon loop�stem structure
from 
TRA� The second is a model proposed by Dumas et al� ��� for the pseudo�
knot structure� These two problems are relatively small when compared to other
structures processed by MC�SYM �some structures take several days to solve on a
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high�performance workstation�� The need for a fast system is emphasized by the
interactive nature of the research process which typically requires that the same
structure be processed repeatedly with slightly di�erent parameters based on the
results of previous runs�
Because we are primarily interested in the performance of the CSP algorithm� the

programs simply count the number of solutions rather than sending them to a 	le�
The list of solutions is nevertheless generated internally� Some vital statistics of
these problems and the run time for the 	nal sequential versions are given in 	g� ��

Nb
 of Nb
 of Nb
 of Nb
 of Run time in seconds
Nucleo� Nodes Pruned Solu� Miranda Scheme C

Problem tides Visited Branches tions

anticodon �� ���� ����� ��� ����� ��
� ��
�
pseudoknot �� ���� ����� �� ����� ��
� ��
�

Figure �� Results for sequential versions on the Apollo


The timings in 	g� � correspond to process time on an Apollo DN
��� ��� Mhz
���
� based� with � Mbytes of RAM running Domain�OS SR 
��
� The C version
of the program was compiled with the native C compiler �cc� with optimizations
enabled ��O�� The Miranda execution was done with Miranda ���
� �
�� and a
heap size of 
 Mbytes� The Scheme execution was done with Gambit ��� and a
heap size of 
 Mbytes� This rather small heap size was the largest that avoided
page faults on the Apollo� Gambit uses a simple stop�and�copy garbage collector
based on Cheney�s algorithm �
�� Consequently� each semispace is 
�� Mbytes� The
Multilisp runs reported in Section � were done with Gambit ��� on a BBN Butter�y
GP
��� shared�memory multiprocessor �
� running Mach 
��� release ������ To
avoid page faults� only 
 Mbytes of heap space was allocated per processor� Each
of the GP
����s processors is a 
� Mhz ����� with � Mbytes of local memory�
Local memory is partitioned through software into private and shared sections� The
program�s code is copied to the private section of all processors and the heap of each
processor is in the shared section �and is thus accessible from any processor�� The
cost for accessing a single word in remote memory is about 
� times larger than the
cost for local memory� On the GP
���� a simple extension of the garbage collection
algorithm makes it operate in parallel� As soon as some processor exhausts its free
space� all processors are interrupted to start a garbage collection� Each processor
traces its stack and copies into its own heap the objects it can reach� Race conditions
are avoided by locking objects before they are copied� These locking operations
increase the cost of garbage collection by a factor of roughly 
���
The 	nal C� Scheme� and Multilisp versions of the program and the data sets

for the anticodon and pseudoknot problems are available by anonymous FTP from
ftp�merl�com�	pub	LASC	nucleic�tar�Z�
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�� Translation to Scheme

The translation from Miranda to Scheme took � man�days and was done in two
steps� The algorithm and overall structure of the Miranda program was preserved
in the 	rst step whereas in the second step we slightly modi	ed the algorithm�
Even though Miranda supports lazy�evaluation the program did not really need
it� so when translating to Scheme all functions were assumed to be strict �i�e� no
delay forms were introduced�� The two programs are roughly the same size in
number of lines of code� Initially we expected the Scheme version to be longer
because of Miranda�s terse syntax� but the use of macros in the Scheme code allowed
substantial savings�
In addition� � man�days were spent optimizing the Scheme code� Originally the

Scheme version was about twice as fast as the Miranda version� Gambit�s pro	ler
was helpful in 	xing several sources of ine�ciency�

� To our surprise� the program was spending a large proportion of its time in the
bignum routines� This was traced to numerical type representation conversions
performed by the generic arithmetic package� In particular� a relatively infre�
quent comparison between an inexact real ��onum� and an exact integer caused
a conversion of the �onum argument to its exact representation �as a rational�
in order to prevent the roundo� error that might have occurred had the exact
integer been converted to a �onum� To avoid these costly conversions� numeri�
cal constants that might be involved in an inexact operation were rewritten as
inexact reals� This reduced the run time by an unexpectedly large factor of 
��

� The run time was further reduced by ��� by inserting a declaration to remove
type checks and open�code all simple primitives �e�g� cons� vector�ref but not

��

� Since generic arithmetic was no longer necessary� numerical type declarations
were added to the program� For each numerical computation� the appropri�
ate arithmetic operation was called �either �onum or 	xnum speci	c�� This
decreased the run time by 

��

� A few critical functions were rewritten as macros� further decreasing the run
time by ���

At this point� the Scheme program was about �� times faster than the Miranda
version� Part of this di�erence can be attributed to the fact that the code generated
by Miranda�s compiler is interpreted� Another important factor is the overhead of
lazy�evaluation� A closer examination of the Scheme program revealed three more
ways of improving the program �these improvements were not carried over to the
Miranda version��

� We noticed that the program could be reformulated slightly to expose some
invariant computations on 
D transformation matrices� so the program was
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rewritten to use precomputed matrices� This decreased the run time by a factor
of ��

� At this point� roughly 
�� of the time was spent in the garbage collector� When
translating the program we were careful to ensure that as little garbage as pos�
sible would be generated� Garbage collections were still frequent due to the
use of a functional programming style �which demands that functions allocate
the result they return� and the extensive use of �onums �which Gambit imple�
ments with a 
� byte boxed representation containing a �� bit �oating�point
number�� To reduce the number of garbage collections we changed Gambit�s
representation of �onums to a more compact � byte representation� Garbage
collection overhead went down to 

� of the total run time� which decreased
by 

�� In principle� the garbage collection overhead can be lowered arbitrarily
by increasing the heap size� but the limited amount of physical memory on the
host computers precluded this option�

� Pro	ling the program showed that a substantial amount of time was spent in
two numerical functions� the product of two 
D transformation matrices and
the product of a 
D transformation matrix by a 
D vector� These were fairly
short functions so we hand�coded them in assembler in such a way that the
intermediate values were unboxed �onums� Garbage collection overhead went
down to �� of the total run time� which decreased by 
���

The 	nal version of the program runs roughly ��� and ��� times faster than the
Miranda version for the pseudoknot and anticodon problems respectively�

�� Translation to C

The Scheme program was translated to C to measure the performance loss due to
the choice of Scheme as the implementation language� The C version has the same
structure but memory allocation is done di�erently� Instead of having functions
dynamically allocate objects on the heap to return them to their caller� the space
for the result is preallocated on the stack by the caller and a pointer passed to the
function� The C version thus avoids heap allocation� garbage collection and the
boxing of �onums�
The results from 	g� � indicate that the Scheme version is a factor of about 
�
� to


�
 slower than the C version� However� when the programs are run on the GP
����
the Scheme version running on a single processor is slower than the C version by
a factor of 
��� to �� This larger di�erence can be accounted for by the smaller
heap size which increases the garbage collection overhead to ��� of the run time�
This shows that the performance of the garbage collector plays an important role
in this application� It is reassuring that the Scheme code� with all the overheads
mentioned above� combined with a small amount of assembler code� is within a
factor of � of the performance attainable with an optimizing C compiler�
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�� Translation to Multilisp

Translation to Multilisp was straightforward� It took a few minutes to obtain a
parallel version of the program from the Scheme version� This program performed
reasonably well for small number of processors but an additional � man�days were
spent tuning the program for maximal performance�
Parallelization consisted of adding a single future form in search around the

recursive call �line 
� in 	g� �� and a single call to touch around the reference to
subsols� �line 
��� Thus� with the exception of the root node� one task is created
per node visited in the search tree� This placement of future and touch expresses
parallelism between the exploration of each branch of the current node� The call to
touch forces synchronization of the task exploring a branch with the task associated
with the current node� Consequently� the parallel execution is of the �fork�join�
variety� and no parallelism is exported outside of search �i�e� when search returns�
all the tasks it has spawned have terminated��
This parallelization produces moderately coarse�grain tasks because of the rela�

tively heavy computation required at each node� The average task size is �� millisec�
onds for the anticodon problem and 
� milliseconds for the pseudoknot problem�
Consequently the overhead of parallelization is small� in fact the run time of the
Scheme and Multilisp versions is identical when run on a single processor with the
same garbage collection algorithm� Gambit uses lazy task creation �LTC� to imple�
ment futures ���� With LTC� future forms compile to a small number of machine
instructions and it is only when another processor needs work that a larger price
is paid to create and transfer a task� Thus� when the program is run on a single
processor� no tasks are created and the overhead is almost zero� However� an opti�
mized implementation of the more traditional eager task creation would probably
give good results due to the moderate task granularity�
In ��� we found that� on the GP
���� contention for shared data can be a serious

bottleneck when the number of processors is large� The GP
��� does not have co�
herent caches or combining circuitry in the memory interconnect so all accesses to a
datum get serialized by the hardware� To reduce contention� Gambit automatically
copies the program�s code and constants to all processors� However� dynamically
allocated data is placed on the processor performing the allocation so it becomes
a bottleneck when it is accessed by simultaneously executing tasks� The program
was modi	ed in a few places to reduce contention� This did not change the run
time on one processor but improved the run time for large number of processors�
One modi	cation was to rewrite the database of nucleotide conformations� which
is heavily accessed� as a constant structure so that each processor would have a
local copy� Another modi	cation was in the way domains are described� Originally
the parameterized DGFs were curri	ed functions that returned DGFs� The DGFs
were thus heap allocated closure objects which were a source of contention� The
creation of these closure objects was avoided by lambda�lifting these functions by
hand� Note however that some dynamically allocated shared structures still remain�
namely� the list of DGFs� the partial instantiation� and the list of solutions�



USING MULTILISP FOR SOLVING CONSTRAINT SATISFACTION PROBLEMS ��	

Figure � gives the run times and speedup curves of the 	nal program� The
speedup curve for the anticodon problem is very good� slightly super�linear for up
to �� processors and then slightly below linear� The super�linear speedup can be
explained by the decreasing garbage collection overhead as the number of processors
increases� Since each processor has its own heap� the total heap size on n processors
is n times larger than on one processor� However� Gambit maintains a few system
data structures in the heap �e�g� symbol table and interpreter tables� so the free
heap space on n processors is actually slightly more than n times that available on
a single processor� Thus� garbage collections become slightly less frequent as the
number of processors increases� For example� the proportion of the run time spent
in the garbage collector drops from ��� on one processor to ��� when � processors
are used and to 
�� when � processors are used� The jumps in the speedup curve
above �� processors are due to the discrete nature of the garbage collector� At 
�
processors and above� the program�s run time is so short that the garbage collector
no longer gets called�
The anticodon problem�s degradation of performance for large number of pro�

cessors is partly explained by the task spawning behavior at the beginning of the
program�s execution� Task spawning is directly dependent on the size of the do�
mains and their ordering� The 	rst task is spawned at ��� seconds and at ����
seconds only 
� tasks have been created� Thus there will be a signi	cant amount
of idle time at the beginning of the run� especially for any processor beyond the
	rst 
�� The e�ect of this idle time clearly becomes more important as the number
of processors is increased �as explained by Amdahl�s law�� The ordering of the
domains could be changed to spawn tasks sooner but this would have the detri�
mental e�ect of duplicating the work that is currently done once� at the start of
the computation�
Speedup for the pseudoknot problem is not as great as for the anticodon prob�

lem� The speedup is roughly linear below 
� processors but at �� processors it
barely exceeds 
� and decreases slightly as more processors are used� At 	rst we
thought the less balanced search tree of the pseudoknot problem was causing an
increase in task creation costs and idle time� However� pro	ling the program shows
that these costs are fairly constant in the range of 
� to �� processors� The real
culprit is higher contention for the partial instantiation� Even though contention
occurs in both problems it is more acute for the pseudoknot problem because the
partial instantiation is accessed � times more frequently and� due to the domain
ordering� the partial instantiation is mostly constructed on a single processor� Un�
fortunately� this contention problem is hard to solve because Multilisp does not
provide constructs to control the placement of data and tasks�
The dynamic load balancing method used in Gambit performed well for both

problems� even at high number of processors� At �� processors� the idle time is on
average 
�� and 
��� of total run time for the anticodon and pseudoknot problems
respectively� The potential imbalance in the search tree is one of the prime motiva�
tions for adopting a programming system with 	ne grain dynamic load balancing�
The static partitioning methods used in several other parallel programming systems
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Figure �� Timing results and speedup curves for anticodon and pseudoknot problems on the
GP����
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would lead to much more idle time when the search tree is not balanced� as is the
case for the pseudoknot problem�

	� Conclusions

We have explored the parallelization of a functional program for determining the
three�dimensional structure of nucleic acids� This is a �real�world� application that
combines symbolic and numerical computation� The constraint satisfaction algo�
rithm used in this application was relatively easy to parallelize using the Multilisp
language� Nevertheless� it was necessary to tune the program in several ways to
attain good performance on the GP
��� shared�memory multiprocessor� An im�
portant aspect was to identify and reduce the contention on shared data structures�
In one case contention was high enough to limit the program�s speedup to a factor
of 
�� Modi	cations in the original sequential algorithm� especially with regard
to �oating�point operations and garbage collection� were extremely important to
achieve good absolute performance�
Our work demonstrates a practical symbolic application that can bene	t from

parallelism� On �� processors� the Multilisp program is up to �� times faster than
a sequential version of the same program rewritten in C in an imperative style and
compiled with an optimizing compiler�

Appendix

A��� Comparative Sequence Analysis

There are positions of the secondary structure which are not conserved �or constant�
among the nucleotide sequences of corresponding organisms� For such positions� we
frequently observe strong covariation with the nucleotide position that is paired to
it� the covariation is such that it preserves the complementarity of the bases� The
diagram below shows the alignment of nucleotide sequences from di�erent organisms
of the anticodon stem�loop region of tRNAs� The lines join the two nucleotides of
the same base�pair� The underlined region is the anticodon� We also observe such
a pattern of covariation between nucleotides that are not located in a secondary
structure element� those nucleotides may be involved in the tertiary interactions
�e�g� the pair G
��C�� 	g� 
 �b���

Saccharomyces cerevisiae ...CCAGACUGAAGAUCUGG...
Spiroplasma meliferum CCUGCCUUGCACGCAGG
Mycoplasma capricolum CCUCCCUGUCACGGAGG
Mycoplasma mycoides CACGGUUUUCAUCCGUG
Spiroplasma meliferum UUUGAUUGAAGCUCAAA
Streptomyces lividans ACGGCCUGCAAAGCCGU

30 35
.. .

40

Anti−parallel
base−pairings
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A��� Input Preparation� Anticodon Problem

This section explains how the user prepares the input to the system� As an exam�
ple� we show the construction of a region of tRNA called the anticodon stem�loop
that comprises nucleotides �� to �
� This construction starts from three pieces
of information� First� through comparative sequence analysis� nucleotides �� to


 are known to be base�paired to nucleotides 
� to �
 and form a double�helical
domain� Second� nucleotides 
� to 
� are thought to be stacked on top of each
other� Third� successive nucleotides in the sequence must be connected by P �O
�

covalent bonds�
The variable anticodon�domains is set to the list of DGFs �see 	g� A
�� The call

�reference rC �
 partial�inst�� where rC is a rigid nucleotide conformation for
the C ribonucleotide and �� its label� will produce a list of one element� the single
allowable placement of the 	rst nucleotide �an arbitrary reference point�� The call
�helix�� rC �� �
 partial�inst� looks for nucleotide �� �the 	rst nucleotide�
in partial�inst and calculates the 
D transformation matrix that puts C�� in
space in such a way that it is connected to C�� and forms a regular A form helix�
A similar computation is applied to nucleotides ��� 
�� and 

� Then we break the
linear extension and jump to the opposite strand and generate a Watson�Crick type
base�pairing with the call �wc rU �� �� partial�inst�� The nucleotides ��� �
�
��� and �
 are generated in the same manner as nucleotide ��� Up to now only the
helical region has been accounted for and each DGF has returned a domain with one
value� thus� there is only one possible partial instantiation� We now begin the com�
putation for the loop region �nucleotides 
� to 
�� for which there is some freedom
in the placement of nucleotides� The call �stacked�� rA �� �� partial�inst�

generates two possible placements for the rigid nucleotide A
� to be stacked under
nucleotide 
�� Similarly� nucleotides 
�� 
�� 
�� and 
� are generated� since no
constraint has been involved the number of partial instantiations being explored is

� ����� The DGFs introduced so far took one rigid nucleotide conformation and
put it in one or two orientations in space� the P�O�� function takes a set of rigid
conformations and tries three di�erent placements for them �these rigid conforma�
tions represent intra�nucleotide variations such as torsion angles�� There are 
�
possible placements for nucleotide 
� and the same number for nucleotide 

� The
number of leaves considered is thus ������ although the constraint �which requires
the oxygen atom number 
� of nucleotide 

 to be no farther than 
 angstr�oms from
the phosphorus atom of nucleotide 
�� causes only the 
�� solutions to be visited�
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�define anticodon�domains
�list
�lambda �partial�inst� �reference rC �� partial�inst��
�lambda �partial�inst� �helix�� rC �	 �� partial�inst��
�lambda �partial�inst� �helix�� rA �
 �	 partial�inst��
�lambda �partial�inst� �helix�� rG �� �
 partial�inst��
�lambda �partial�inst� �helix�� rA �� �� partial�inst��
�lambda �partial�inst� �wc rU �
 �� partial�inst��
�lambda �partial�inst� �helix�� rC 
� �
 partial�inst��
�lambda �partial�inst� �helix�� rU 
� 
� partial�inst��
�lambda �partial�inst� �helix�� rG 
� 
� partial�inst��
�lambda �partial�inst� �helix�� rG 
� 
� partial�inst��
�lambda �partial�inst� �stacked�� rA �	 �
 partial�inst��
�lambda �partial�inst� �stacked�� rG �� �	 partial�inst��
�lambda �partial�inst� �stacked�� rA �� �� partial�inst��
�lambda �partial�inst� �stacked�� rA �� �� partial�inst��
�lambda �partial�inst� �stacked�� rG �
 �� partial�inst������ Distance
�lambda �partial�inst� �P�O�� rCs �� �� partial�inst��� � Constraint
�lambda �partial�inst� �P�O�� rUs �� �� partial�inst������ ��� Angstroms
��

�define �anticodon�constraint� v partial�inst�
�if �� �var�id v� ���

�let ��p �atom�pos nuc�P �get�var �
 partial�inst��� � P in nucleotide �

�o�� �atom�pos nuc�O�� v��� � O�� in nucleotide ��

��� �pt�dist p o��� ����� � check distance
�t��

Figure A�� Statement of the anticodon problem� including de
nition of the domains �and se�
quence	 and the constraints
 The call �search ��� anticodon�domains anticodon�constraint��

produces the list of all solutions


�define �wc nuc i j partial�inst� � for Watson�Crick pairing of nucleotides i and j
�let� ��ref �get�var j partial�inst�� � find variable j

�tfo �dgf�base wc�tfo ref nuc��� � compute placement of nucleotide i
�list �make�var i tfo nuc���� � create singleton domain

�define wc�tfo � precomputed transformation matrix for Watson�Crick paired base
���������� �����	 ������


�����	 ���
�	 ���
��

������
 ���
��
 ����
�	
�����	� ������ 	����	��

Figure A	� The wc parameterized DGF
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