
Guy Lapalme
RALI-DIRO

lapalme@iro.umontreal.ca

November 24, 2023

Data-to-Text Bilingual Generation

Abstract

This document illustrates the use of pyrealb for generating two parallel texts (English and French) from a single
source of data. The data selection and text organisation processes are shared between the two languages. only
language dependent word and phrasing choices are distinct processes. The realized texts thus convey identical
information in both languages without the risk of being lost in translation. This is especially important in cases
where strict and simultaneous bilingualism is required. We first present the types of applications targeted by
this approach and how the pyrealb English and French realizer can be used for achieving this goal in a natural
way. We describe an object-oriented organization to ensure a convenient realization in both languages. To
illustrate the process, different types of applications are then briefly sketched with links to the source code. A
brief comparison of the text generation is given with the output of an instance of a GPT.

1. Contexts of application
Multilingual generation is important to be understood by a wider audience as shown by the always-increasing
need for translation. In recent years, automatic translation has become an everyday tool for most people,
especially non-English speakers, but its output must always be taken with care, especially when the target of
the translation is not the mother tongue of the writer. While humans are very good at filling missing
information or correcting details in their language, automatic translations should always be revised by
professionals for publication or official texts.

One difficult challenge in translation, both human and automatic, is ensuring that the information in the source
and target texts are strictly equivalent, especially in the case of statistical data. Although human translators
work with great care, they do not always reproduce the numbers exactly in their translation which can be
embarrassing and can have legal consequences. Rule-based and statistical automatic translators are less prone
to these types of errors as they most often copy the values from the original to their translations. Although
neural automatic translators produce very fluent texts, they are prone to hallucinations because they start from
an abstraction of the original information, so their output must be checked carefully for ensuring that the same
information is conveyed in both languages.

While automatic translation can be appropriate for texts written by humans, it is unnecessary when the text
can be generated automatically in both languages. For example, in Canada, thousands of weather reports are
generated daily from the output of numerical models. Meteorologists use graphical tools to fine-tune the
numerical outputs, but the English and French versions are generated automatically thus removing the
translation delay and guaranteeing that the same information is conveyed in both languages as required by the
Canadian Law. Similar arguments can be made for generating business reports for multinational corporations
or sport narratives directly from data. Although in this report, we focus on data-to-text applications, we will
show how bilingual generation can also be used for creating translation drill exercises for students.

https://github.com/lapalme/pyrealb/tree/main

1.1. What is data-to-text ?

Before tackling the text generation process, we lay out the types of applications for which bilingual generation
seems more appropriate. To simplify, we only consider the generation of a single sentence, but the process can
be applied to all sentences of a text.

Adapting the notation introduced by Upadhyay and Massie (2022), we define a dataset as a group of data
instances called events each defined by a data structure for which a sentence must be generated for
conveying the insights and the information about the event. The data structure is a set of objects
described by features for which values are recorded.

A text generator in a data-to-text context is thus a function from subsets of data structures to a sentence
.

Sometimes the are independent, for example, when describing a restaurant with a list of features such as
the food, location, the prices, etc. But more realistically, time dependencies occur between events; for
example, when describing sports matches in which it is important to convey relations between events to show
the progress of a player or a team within a season. An important feature of this data set is thus some time
stamp, such as a date or a link between games.

In this context, is classically divided in two subtasks (Reiter and Dale, 2000):

, (What to say ?) determines the content of the sentence by selecting the set of data structures to
convey. This step being language independent, it is performed once for both languages.

 (How to say ?) chooses the phrase structure and words to use in the sentence and performs the
linguistic realization. This step, called text realization, is language dependent, thus the subscript. If target
languages have some commonalities (such as between English and French), it is possible to share parts of
the language dependent processing.

The generation of bilingual sentences and can thus be framed as function compositions where the
selected events are identical for both languages.

In end-to-end generation using neural methods that go directly from a data set, each event is represented as
flattened tuples :

from which the text is directly generated. It thus remains a challenge to ensure a consistent event selection for
each language; moreover, there is always the risk of hallucinations (reporting events that do not appear in the
original data) because of the generalization/abstraction process inherent in neural approaches.

We present how we use pyrealb to implement and with a rule-based approach in different settings.
Given that pyrealb is implemented in python, it can be conveniently combined with data-processing steps
implemented using one of the many python data analysis tools. In our examples, we use simple python
functions for implementing the data selection and performing common linguistic choices.

2. Multilingual realizers
A number multilingual text generators (i.e. dealing with at least another language than English) have been
developed. For example, KPML can handle Spanish, Dutch, Chinese, German and Czech; Surgeon-2 can
generate German; Grammatical Framework (Ranta 2011) is a programming language designed for writing
grammars in several languages in parallel; GenDR (Lareau et al. 2018) can generate sentences in Catalan,
French, Polish, Portuguese and Spanish. These generators are based on linguistic theories, considering many
details in the construction of sentences, which allows powerful realizations. However, that complexity hinders
somewhat their ease of use: writing specifications for them requires an intimate knowledge of the underlying
theory.

SimpleNLG (Gatt and Reiter 2009), as its name implies, defines itself by its ease of learning and of use. Words,
phrases and other structures are Java objects created and manipulated by a programmer and integrated into a
Java project. SimpleNLG can also be called from other programming languages through a web server with an
XML interface. While its principles somewhat limit the power of its realizations compared to other systems,
these realizations are adequate for many uses. It has been ported to some languages, namely Galician,
Spanish, German, Dutch, Italian and Mandarin but a single language at a time, one exception being
SimpleNLG-EnFr that Vaudry and Lapalme developed to work in both English and French at the same time.

Building on this experience, we developed jsRealB (Lapalme, 2022), written in JavaScript, to ease its integration
in a web environment. RosaeNLG is a Natural Language Generation library for node.js or browser execution,
based on the Pug template engine dealing with English, French, German, Italian and Spanish. RosaeNLG was
developed for realizing some simple data to text applications and is especially tuned for outputting lists of
objects and properties using appropriate commas and a conjunction at the end of the list. Its linguistic
coverage, at least for French and English, is limited compared to jsRealB.

We later ported jsRealB to python to create pyrealb, described in the next section, with the same goal of realizing
sentences in both English and French, even within the same sentence. The further sections will show how
pyrealb can integrate all steps (, and) of the data-to-text pipeline in a single and convenient python
formalism.

3. pyrealb
pyrealb is a Python package which allows English and French sentence realization by programming language
instructions that create internal data structures corresponding to the elements of the sentence. The data
structure can be built incrementally and, when needed, the realization process traverses it to produce a string
in the appropriate language.

pyrealb has the following components for both English and French:

http://www.purl.org/net/kpml
http://www.suregen.de/00023.html
https://www.grammaticalframework.org/
https://github.com/simplenlg/simplenlg
https://github.com/citiususc/SimpleNLG-GL
https://github.com/citiususc/SimpleNLG-ES
https://github.com/sebischair/SimpleNLG-DE
https://aclweb.org/anthology/W18-6508
https://github.com/alexmazzei/SimpleNLG-IT
https://aclweb.org/anthology/papers/W/W18/W18-6506/
https://github.com/rali-udem/SimpleNLG-EnFr
https://github.com/rali-udem/jsRealB
https://rosaenlg.org/
https://github.com/pugjs/pug
https://github.com/lapalme/pyrealb
https://github.com/lapalme/pyrealb

a lexicon (a JSON file) defining the word category, gender, number, declension and conjugation rule
number and other features needed to produce the final token;

morphological rules (a JSON file) to determine the appropriate word forms, such as plurals and
conjugations;

syntactic rules (python classes) to build sentence structures from terminals and properly order words
within a sentence, performing the most common agreements between constituents and carrying out
other useful sentence organization tasks such as managing coordination or applying sentence
transformations.

pyrealb also performs the spelling out of numbers and the wording of temporal expressions that are especially
useful in data to text applications.

pyrealb accepts either a Constituent or a Dependent notation for building sentences. In this document, we give
examples using the Constituent notation, but the same methodology applies to the Dependent notation. The
data structure is built by class constructor calls whose names are like the symbols typically used for constituent
syntax trees:

Terminal: N (noun), V (verb), A (adjective), D (determiner), Pro (pronoun), Adv (adverb), P
(preposition), C (conjunction), NO (number), DT (date), Q (quoted/canned text). A terminal is created with
a single parameter its lemma, most often a string,

Phrase for combining its parameters, i.e. terminals and other phrases: S (Sentence), SP (Subordinate
Phrase), NP (Noun Phrase), VP (Verb Phrase), AP (Adjective Phrase), CP (Coordinate Phrase), PP
(Prepositional Phrase), AdvP (Adverbial Phrase).

To produce the text string corresponding to the structure of a Terminal or a Phrase, the realize() method
of Terminal, but more often of a Phrase, must be called. As most often generation occurs in only one
language at a time, pyrealb tracks the current language set with either loadEn() or loadFr() after which
terminals and phrases created are associated with this language. Each Terminal being associated with a
language when it is created, the appropriate morphological rules can be applied when it is realized.

Features are added to these structures using the dot notation to modify their properties. For terminals, their
person, number, gender can be specified. For phrases, the sentence may be negated or set to a passive mode;
a noun phrase can be pronominalized. Punctuation signs and HTML tags can also be added.

 pyrealb deals with the final realization, which is an often neglected part in NLG systems because it is dubbed to
be pedestrian, often associated with glorified format statements, although its output is the only thing that the
end user sees. How acceptable is an output if word agreements or elision are not properly done or if it consists
of a mere list of tokens? This might be sufficient for automatic evaluation, but it cannot be used in a production
setting. A well formatted and grammatically correct output is important for the social acceptability of a system.
The fact that neural systems often produce flabbergastingly fluent text explains in part their popularity.

Because English and French share most of their grammatical features, options can be specified for both
languages, except for a few cases; e.g. English perfect aspect is ignored in French and French tenses imparfait
and temps composés are not used in English.

The following shows how an English and a French sentence can be built and printed. Note that adjectives are
placed according to the rules of each language.

It is also possible to mix languages within a single sentence such as in the following French sentence with an
English subject. Note that the plural of the English subject is propagated to the French portion of the sentence.
In practice, this type of bilingual sentence is seldom used, but it was thought important to cater also for these
cases.

 pyrealb «walks the talk» by calling itself for realizing its error messages in the current language such as missing
words from the lexicon or bad values for options. English is used for errors detected in English sentences and
similarly for French.

loadEn() # set the language to English

print(S(NP(D("the"),N("cat"),A("small")), # create a subject NP

 VP(V("jump").t("ps"), # create VP, setting past for the verb time

 PP(P("on"), # create a PP with

 NP(D("the"),N("mat"),A("green")))) # an object NP

).realize())

 # output: The small cat jumped on the green mat.

loadFr() # set the language to French

print(S(NP(D("le"),N("chat"),A("petit")), # create a subject NP

 VP(V("sauter").t("ps"), # create VP, setting past for the verb time

 PP(P("sur"), # create a PP with

 NP(D("le"),N("tapis"),A("vert")))) # an object NP

).realize())

 # output: Le petit chat sauta sur le tapis vert.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

loadEn() # set the language to English

subj = NP(D("the"),N("cat"),A("small")).n("p") # create an English plural NP

loadFr() # set the language to French

verb = VP(V("sauter"), # create a French VP, present by default

 PP(P("sur"), # create a PP with

 NP(D("le"), N("tapis"), A("vert")))) # an object NP

print(S(subj,

 verb).realize())

 # output: The small cats sautent sur le tapis vert.

1

2

3

4

5

6

7

8

9

3.1. Useful tools for data-to-text generation

Data being unpredictable, it is often hard to create a complete pyrealb expression with all its components in a
single call. So pyrealb allows an incremental way of building the structure using the add(elem,pos) method to
modify an existing Phrase by adding a new parameter at a position (last by default). The following example
adds a complement to the verb phrase of the previous example.

Realizing a variable number of data is also critical in a data-to-text context and within a sentence this implies
building the coordination of elements. The following shows how coordination adapts its realization to the
number of arguments. Note also the fact that Phrase constructors accept lists of parameters that are flattened
before construction of the data structure.

We see that the coordination is ignored when there is only one element and that a comma is introduced when
there are more than two. The number for the verb depends on how many elements are coordinated. The
following example shows a similar case in French, in which the gender and number of both the verb and
adjective depend on the number of coordinated subjects according to grammatical rules of French.

loadEn()

verb.add(PP(P("over"),NP(D("a"),N("fence")).n("p")))

print(S(subj.n("p"), # set the English subject to plural

 verb).realize())

 # output: The small cats sautent sur le tapis vert over fences.

1

2

3

4

5

persons = ["mother","daughter","father"]

for i in range(0,len(persons)):

 print(S(CP(C("and"),[NP(D("the"),N(p)) for p in persons[:i+1]]),

 VP(V("be"),

 A("happy"))).realize())

 # output:

 # The mother is happy.

 # The mother and the daughter are happy.

 # The mother, the daughter and the father are happy.

1

2

3

4

5

6

7

8

9

loadFr();

personnes = ["mère","fille","père"]

for i in range(0, len(personnes)):

 print(S(CP(C("et"), [NP(D("le"), N(p)) for p in personnes[:i + 1]]),

 VP(V("être"),

 A("heureux"))).realize())

 # output:

 # La mère est heureuse.

 # La mère et la fille sont heureuses.

 # La mère, la fille et le père sont heureux.

1

2

3

4

5

6

7

8

9

10

In any python program, functions can/should be defined for creating recurrent patterns such as the following
which creates a sentence structure for reporting an event involving some persons at a date. The tense of the
verb can also be specified.

3.2. Challenges for bilingual generation

Because, in a bilingual setting, there are two language contexts with their own rules, care must be given at the
evaluation time of the expression. In python, all top-level expressions in scripts such as the ones shown above
are evaluated when the script is loaded, it is important to set the appropriate language environment (using
loadEn() or loadFr()) before they were encountered and evaluated.

To defer the evaluation, it is possible to use a function (def in python) whose body will be evaluated when it is
called. As python uses the applicative order evaluation mechanism, the parameters of a function are evaluated
before its call, so the appropriate language context must also be set when the function is called. To delay the
evaluation of a python expression exp until it is needed, lambda: can be added before exp which creates a
function whose body can be later evaluated by calling exp() . As we saw earlier, this brings the advantage
that this function creates new copies of the original structure. Parameters can also be added to the lambda for
more flexibility.

Although not specific to bilingual generation, delaying expression evaluation is also useful in the context of the
oneOf(...) function, which selects radnomly one of its arguments. oneOf(...) is particularly useful for
varying between synonyms or equivalent phrasings to make the text less repetitive. oneOf(...) checks if the
selected element is callable, and if so it calls it and returns the result of this evaluation. So oneOf() is often
called with functional parameters such as these:

from datetime import datetime

loadEn()

def report(event, persons, date, tense="p"):

 meeting = PP(P("at"), NP(D("a"), N(event)))

 return S(CP(C("and"), [NP(D("a"),N(person)) for person in persons]),

 NP(NO(len(persons)),N("person")).ba("("), # show number of persons

 VP(V("be").t(tense),

 A("present"),

 meeting,

 DT(date).dOpt({"hour":False,"minute":False,"second":False})))

print(report("birthday",["mother","girl"],

 datetime(2023,5,30),"ps").realize())

print(report("assembly",["grandfather","father","boy"],

 datetime(2023, 12, 30),"f").realize())

 # output:

 # A mother and a girl (2 persons) were present at a birthday on Tuesday, May 30,

2023.

 # A grandfather, a father and a boy (3 persons) will be present at an assembly on

Saturday, December 30, 2023.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Without lambda , given the applicative order of evaluation of python , all expr_i would be evaluated but
return only one of them.

We have illustrated some features of the pyrealb realizer. For more details, see the online documentation or
experiment with a Jupyter Notebook.

The next sections give examples of bilingual text generation in data-to-text contexts. Most of the data
processing and text organization is common to both languages, the only language-specific part being the final
realization. This setup thus greatly simplifies ensuring that the same information is conveyed in both
languages.

4. Organizing the realization process with pyrealb
As a first example of a bilingual report, we consider the case where there is a strict parallelism between English
and French: only words differ, the phrase structure is identical for both languages. This simplification will be
removed later, but it allows focusing on some aspects.

4.1. Common phrase structure

Names of persons are added as nouns to each lexicon and a series of equivalent words in English and French
are given. A function is defined for determining the appropriate tense to use.

oneOf(lambda: expr_1,

 lambda: expr_2,

 ...

 lambda: expr_n)

1

2

3

4

add names to the English and French lexica

for loadF in [loadEn,loadFr]:

 loadF()

 addToLexicon({"Alice":{ "N": {"g": "f", "tab": "nI" } }})

 addToLexicon({"Bob":{ "N": {"g": "m", "tab": "nI" } }})

 addToLexicon({"Eve":{ "N": {"g": "f", "tab": "nI" } }})

text parameterization with words dictionaries indexed by language

participants = ["Alice", "Eve", "Bob"]

conj = {"en":"and", "fr":"et"}

prep = {"en":"at", "fr":"à"}

det = {"en":"a", "fr":"un"}

copula = {"en":"be", "fr":"être"}

attribute = {"en":"present", "fr":"présent"}

individual = {"en":"person", "fr":"personne"}

dateOptions = {"minute":False,"second":False}

compare day of date with the day of the reference

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

http://www.iro.umontreal.ca/~lapalme/pyrealb/documentation.html?lang=en
https://mybinder.org/v2/gh/lapalme/pyrealb-jupyter/HEAD?labpath=pyrealb-en.ipynb

The realization function is like the report function in the previous section, the main difference being that
words are indexed by the lang parameter.

This function can be called to create sentences in both French and English, varying the number of participants
and the date.

and produces the following bilingual output, in which dates and numbers are properly written with the correct
agreements between components although the user did not specify them explicitly.

def tense(date, reference):

 o = date.toordinal()

 ref_o = reference.toordinal()

 return "p" if o == ref_o else "f" if o > ref_o else "ps"

19

20

21

22

def report(event, persons, date, lang):

 loadEn() if lang=="en" else loadFr()

 meeting = PP(P(prep[lang]), NP(D(det[lang]),N(event)))

 return S(CP(C(conj[lang]), [N(person) for person in persons]),

 NP(NO(len(persons)).nat(), N(individual[lang])).ba("("),

 VP(V(copula[lang]),

 A(attribute[lang]),

 meeting,

 DT(date).dOpt(dateOptions)).t(tense(date,today))))

1

2

3

4

5

6

7

8

9

today = datetime.today()

loadEn(); print(DT(today).dOpt(dateOptions).realize(),end="")

loadFr();print("-",DT(today,"fr").dOpt(dateOptions).realize(),"\n")

for (i,day) in zip(range(1,len(participants)+1),

 [today-timedelta(days=1),today,today+timedelta(days=1)]):

 print(report("assembly",participants[:i], day,"en").realize())

 print(report("réunion",participants[:i], day,"fr").realize())

 print("--")

1

2

3

4

5

6

7

8

9

4.2. Different phrase structures

The example in the previous section is admittedly restrictive, because it takes for granted that the phrase
structure in both languages is identical. This is like localization tools used to adapt computer applications to
different languages by adapting menu items and user messages. But this approach cannot always be used in
more realistic text generation contexts.

We will now show a way to generate similar sentences in both languages while keeping some flexibility in the
formulations using an object-oriented organization. The language independent algorithms and phrase choices
are performed in a class and the language dependent parts are done in subclasses. Usually the subclasses
have a similar organization but they allow different sentence structures.

Here is the language independent main class equivalent to our previous example. Word choices will be
performed in the subclasses attribute and methods such as self.and_conj , self.attend() or
self.meeting() .

on Tuesday, September 26, 2023 at 5 p.m.- le mardi 26 septembre 2023 à 17 h

Alice (one person) was present at an assembly on Monday, September 25, 2023 at 5 p.m.

Alice (une personne) fut présente à une réunion le lundi 25 septembre 2023 à 17 h.

--

Alice and Eve (two persons) are present at an assembly on Tuesday, September 26, 2023

at 5 p.m.

Alice et Eve (deux personnes) sont présentes à une réunion le mardi 26 septembre 2023

à 17 h.

--

Alice, Eve and Bob (three persons) will be present at an assembly on Wednesday,

September 27, 2023 at 5 p.m.

Alice, Eve et Bob (trois personnes) seront présents à une réunion le mercredi 27

septembre 2023 à 17 h.

--

1

2

3

4

5

6

7

8

9

10

11

class Realizer:

 def __init__(self): # called by __init__() in subclasses after setting the

language

 addToLexicon({"Alice":{ "N": {"g": "f", "tab": "nI" } }})

 addToLexicon({"Bob":{ "N": {"g": "m", "tab": "nI" } }})

 addToLexicon({"Eve":{ "N": {"g": "f", "tab": "nI" } }})

 today = datetime.today()

 dateOptions = {"minute": False, "second": False}

 # compare day of date with the day of the reference

 def tense(self,date, reference):

 o = date.toordinal()

1

2

3

4

5

6

7

8

9

10

11

12

The language-specific parts are the following English and Francais classes. The report() method is also
defined in each subclass to that the appropriate language is loaded before calling the language independent
part is called via super() . The terminals are specified directly in each language. Note that the sentence
structure for attend(meeting) is different in subclasses.

These language dependent classes are first instantiated, then called as follows

 ref_o = reference.toordinal()

 return "p" if o == ref_o else "f" if o > ref_o else "ps"

 def report(self,event,persons,date):

 print(S(CP(self.and_conj,[N(person) for person in persons]),

 NP(NO(len(persons)).nat(), self.individual()).ba("("),

 self.attend(self.meeting(event)),

 DT(date).dOpt(Realizer.dateOptions))

 .t(self.tense(date,Realizer.today)))

13

14

15

16

17

18

19

20

21

class English(Realizer): | class Francais(Realizer):

 def __init__(self): | def __init__(self):

 loadEn() | loadFr()

 self.and_conj = C("and") | self.and_conj = C("et")

 super().__init__() | super().__init__()

 |

 def report(self,event,persons,date): | def report(self,event,persons,date):

 loadEn() | loadFr()

 super().report(event,persons,date)| super().report(event,persons,date)

 |

 def attend(self,meeting): | def attend(self,meeting):

 return VP(V("attend"),meeting) | return VP(V("être"),A("présent"),

 | PP(P("à"),meeting))

 |

 def individual(self): | def individual(self):

 return N("person") | return N("individu")

 |

 def meeting(self,noun): | def meeting(self,noun):

 return NP(D("the"), N(noun)) | return NP(D("le"), N(noun))

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

english = English()

francais = Francais()

for (i,day) in zip(range(1,len(participants)+1),

 [today-timedelta(days=1),today,today+timedelta(days=1)]):

 english.report("assembly",participants[:i],day)

 francais.report("réunion",participants[:i],day)

1

2

3

4

5

6

 To get a similar output as the previous example, except for the date and the way of indicating attendance.

This setup for a single sentence shows how the object-oriented features of Python can be used to organize the
parallel sentence realization in two languages. The full code is available on GitHub as demo for pyrealb. In such
a simple case, the class organization might seem an overkill, but this organization is very convenient in more
complex cases as it will be shown later. When the realization process makes use of Abstract Base Classes, the
python interpreter can check that the language dependent realizer methods are similar in all subclasses and
help guarantee that equivalent information is conveyed in both languages, provided each method with the
same name provide equivalent phrasings.

The next section describes use cases for bilingual data-to-text realization in more complex settings, but the
fundamental idea is the same: parallel syntactic abstractions in a convenient notation that can be
parameterized with values. This ensures that the input data is correctly conveyed in the output thus removing
the need for double-checking or having to install guardrails to avoid hallucinations (reporting facts that are not
present in the data) or risking the output of inappropriate language.

When the situation is appropriate, namely, when we deal with numerical data, we must be certain that
computer systems always produce the right answer, not just usually. Remember the Pentium bug that affected
1 in 9 billion floating point divides but that cost Intel 475 million in 1994.

As Martin Kay (1980) put it

An algorithm that works most of the time is, in fact, of very little use unless there is some automatic way
of deciding when it is and when it is not working.

5. Use cases
This section gives data-to-text demonstration programs implementing our methodology. As the full code and
some algorithmic details are available on the pyrealb GitHub, we focus on the specificities of the data of each
application and display typical outputs.

on Friday, September 29, 2023 at 2 p.m.- le vendredi 29 septembre 2023 à 14 h

Alice (one person) attended the assembly on Thursday, September 28, 2023 at 2 p.m.

Alice (un individu) fut présente à la réunion le jeudi 28 septembre 2023 à 14 h.

--

Alice and Eve (two persons) attend the assembly on Friday, September 29, 2023 at 2

p.m.

Alice et Eve (deux individus) sont présentes à la réunion le vendredi 29 septembre

2023 à 14 h.

--

Alice, Eve and Bob (three persons) will attend the assembly on Saturday, September 30,

2023 at 2 p.m.

Alice, Eve et Bob (trois individus) seront présents à la réunion le samedi 30

septembre 2023 à 14 h.

1

2

3

4

5

6

7

8

9

10

https://github.com/lapalme/pyrealb/tree/main/demos/report
https://docs.python.org/3/library/abc.html
https://github.com/lapalme/pyrealb

5.1. Realization of all the data

We now present two use cases in which the input data has already been selected and the generation process is
limited to the presentation of all the data. The generation is thus limited to How to say ? (and) which can
imply sorting and organizing the input data, though.

5.1.1. E2E challenge

[code]

The task here is to realize descriptions of restaurants based on a meaning-representation given by a list of key-
value pairs such as the following;

About 50K pairs of meaning-representation with the corresponding expected text were crowdsourced for a
shared task, held at the 2017 SIGdial meeting (Dušek et al., 2020). We ported to python our previous jsRealB
version, described in this page. This system produces the following two sentences from the meaning-
representation given above.

5.1.2. WebNLG Challenge 2020

[code]

This task is to realize information given as simplified RDF triples. An RDF triple is composed of three URIs
corresponding to the subject, the predicate and the object that can also be a constant string, a date or a
number. The predicate of a triple declares a relation between the subject and the object, such as Alan_Bean |
birthPlace | Wheeler,_Texas , in which Alan_Bean is the subject, birthPlace the predicate indicating that
the subject was born at the place given by the object and Wheeler,_Texas is the object. This could be
verbalized as Alan Bean is born in Wheeler, Texas.

food[English], priceRange[high], near[Raja Indian Cuisine],

 name[The Mill], area[riverside], familyFriendly[yes], eatType[pub]

1

2

The Mill is a pub near Raja Indian Cuisine in the riverside area that serves English

food with high prices. It is kid friendly.

The Mill est un pub près de Raja Indian Cuisine au bord de la rivière qui offre une

cuisine anglaise à prix élevés. Il est approprié pour les enfants.

1

2

3

4

5

Apollo_12 | backupPilot | Alfred_Worden

Alan_Bean | mission | Apollo_12

Apollo_12 | operator | NASA

Apollo_12 | commander | David_Scott

Alan_Bean | birthPlace | Wheeler,_Texas

Alan_Bean | selectedByNasa | 1963

Alan_Bean | birthDate | "1932-03-15"

1

2

3

4

5

6

7

https://github.com/lapalme/pyrealb/tree/main/demos/e2e_challenge
http://rali.iro.umontreal.ca/JSrealB/current/demos/e2eChallenge/index.html
http://rali.iro.umontreal.ca/JSrealB/current/demos/e2eChallenge/description.html
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb

The English RDF verbalizer is based on a symbolic approach: each RDF triple corresponds to a sentence in
which the subject and the object of a triple are mapped almost verbatim as subject and object of the sentence.
This is possible in this case because the subject and object have already been nominalized, but that would not
be the case if real URIs had been inputted.

The predicate of the triple corresponds to a verb phrase which determines the structure of the sentence. The
predicates are ordered to create a meaningful story and parts of sentences are merged when they share
subjects or predicates. Our participation at the WebNLG Challenge used jsRealB, through a web server, for the
English realization. This system obtained good evaluation results (being in the middle of the pack) for automatic
evaluation. For the human evaluation, it was judged excellent (always in the first group of participants) for
coverage, relevance and correctness. The text structure and fluency were judged less well (in the second and
third group).

The current version uses pyrealb and realizes both English and French sentences. The following sentences were
realized from the input given above.

 More details

5.2. Realization of a subset of the data

We now show examples of cases with plenty of data, for which to generate bilingual texts that focus on some
important aspects.

5.2.1. Weather reports

[code]

The input of the application is a set of meteorological information (e.g., precipitations, temperature, wind, UV
index, ...) provided by Environment and Climate Change Canada (ECCC). Unlike many data-to-text applications,
this information is machine generated: it is created by a numerical weather model which outputs data for
ranges of hours after the time the bulletin is expected to be issued.

For this demo, we extracted a subset of the global information for regions of Ontario and Québec for 2018 and
2019 which is nevertheless illustrative of the natural language generation problems encountered in this
context. We converted the Meteocode, an internal data format of ECCC, to JSON in which time indications are
shifted, so that they appear in local time while, in the original, they were in UTC.

We now outline the JSON data organization for a weather bulletin used as input for our demonstration
program in terms of Python data structures:

Alan Bean was born on March 15, 1932 in Wheeler, Texas and joined NASA in 1963.

He was a crew member of Apollo 12. Apollo 12 is commanded by David Scott, it has as

its back-up pilot Alfred Worden and is operated by NASA.

Alan Bean est né le 15 mars 1932 à Wheeler, Texas et a été choisi par NASA en 1963.

Il a été un membre de l'équipe d'Apollo 12. Apollo 12 est commandé par David Scott, il

a compté Alfred Worden comme pilote de réserve et est opéré par NASA.

1

2

3

4

5

6

7

https://aclanthology.org/2020.webnlg-1.16.pdf
https://github.com/lapalme/pyrealb/tree/main/demos/RDFpyrealb/README.md
https://github.com/lapalme/pyrealb/tree/main/demos/weather
https://www.canada.ca/en/environment-climate-change.html

tomorrow (6h,18h) fpto12-2018-07-18-2000-r1209c :: 2018-07-18 16:00:00

precipitation-type [15h,0h):[showers, [15h,0h):[thunderstorm]]

precipitation-probability [5h,15h):[10], [15h,18h):[30]

sky-cover [5h,11h):[2, 2], [11h,15h):[2, 8], [15h,18h):[8, 8]

temperatures : [5h,8h):[15], [8h,11h):[23], [11h,14h):[28], [14h,17h):[25], [17h,20h):[23]

uv-index [12h,14h):[7.7]

wind [0h,12h):[sw, speed, 10], [12h,20h):[sw, speed, 20]

administrative information: issue and next-issue times, list of region names to which the forecast applies
in both English and French

weather information : list of values of which the first two are the starting hour and ending hour relative to
0h of the issue datetime, when they are negative, they refer to historical data; the other values (described
below depending on the type of information). For precipitation-type and wind , a value can be a list of
values which describes an exceptional phenomenon (e.g., gust within a wind period) that occurs during
this period.

For a given period, these JSON terms can be visualized as follows:

Although in principle, weather data is strongly time-dependent, the upstream process ensures that the
necessary historical information is included in the current record. Thus limits itself to the selection of the
most important values within the current dataset selection according to standard values defined by writing
rules of Environment Canada.

Here is an example of an evening bulletin realized by pyrealb in English and French.

WEATHER BULLETIN: regular

Forecasts issued by pyrealb on Wednesday, July 18, 2018 at 4:00 p.m. for today and

tomorrow at 4:00:00 p.m.

The next scheduled forecasts will be issued on Thursday, July 19, 2018 at 5:30 a.m.

Armstrong - Auden - Wabakimi Park

Nakina - Aroland - Pagwa

Tonight : Clear. A few clouds. Partly cloudy. 30 percent chance of

 showers. Wind west 20 km/h around noon. Becoming southwest in the

 evening. Low 14, with temperature rising to 28 by morning.

Thursday : Mainly sunny. Increasing cloudiness tomorrow morning.

 Mainly cloudy. 30 percent chance of showers. Wind southwest 20 km/h

 around noon. High 28. Low 15. UV index 8 or very high.

Thursday night : Mainly cloudy. 30 percent chance of showers. Wind

 southwest 20 km/h around noon. Low 14, with temperature rising to 23

 by morning.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

As the bilingual outputs for both French and English are strictly parallel and a complete bulletin is generated in
a language, uses parallel bilingual structures within the code such as the following to determine the phrase
structure for the day depending on the hour (e.g., morning or matin when the hour is between 9 and 12).
Most generation function are parameterized by the language to generate.

more details

END

BULLETIN MÉTÉOROLOGIQUE: régulier

Prévisions émises par pyrealb le mercredi 18 juillet 2018 à 16 h 0 pour aujourd'hui et

demain à 16 h 0 min 0 s.

Les prochaines prévisions seront émises le jeudi 19 juillet 2018 à 5 h 30.

Armstrong - Auden - parc Wabakimi

Nakina - Aroland - Pagwa

Ce soir et cette nuit : Dégagé. Quelques nuages. Partiellement

 couvert. 30 pour cent de probabilité d'averses. Vents de l'ouest de

 20 km/h vers midi. Devenant du sud-ouest dans la soirée. Minimum

 14, températures à la hausse pour atteindre 28 en matinée.

Jeudi : Généralement ensoleillé. Ennuagement demain matin.

 Généralement nuageux. 30 pour cent de probabilité d'averses. Vents

 du sud-ouest de 20 km/h vers midi. Maximum 28. Minimum 15. Indice

 UV 8 ou très élevé.

Jeudi soir et nuit : Généralement nuageux. 30 pour cent de

 probabilité d'averses. Vents du sud-ouest de 20 km/h vers midi.

 Minimum 14, températures à la hausse pour atteindre 23 en matinée.

FIN

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

dayPeriods=[(0,5, {"en":lambda:NP(N("night")),

 "fr":lambda:NP(N("nuit"))}),

 (5,9, {"en":lambda:NP(Adv("early"),N("morning")),

 "fr":lambda:NP(N("début"),PP(P("de"),N("matinée")))}),

 (9,12, {"en":lambda:NP(N("morning")),

 "fr":lambda:NP(N("matin"))}),

 (12,18,{"en":lambda:NP(N("afternoon")),

 "fr":lambda:NP(N("après-midi"))}),

 (18,24,{"en":lambda:NP(N("tonight")),

 "fr":lambda:NP(N("soir"))})]

1

2

3

4

5

6

7

8

9

10

https://github.com/lapalme/pyrealb/tree/main/demos/weather/README.md

Game FGM FGA FG3M FG3A FTM FTA OREB TREB AST STL BLK TOV PF PTS

Q1 13 21 3 8 1 2 2 10 10 2 5 6 30

Q2 8 15 0 2 8 12 1 11 7 1 1 4 24

Q3 10 16 4 8 5 6 1 10 9 2 2 6 29

Q4 4 15 0 5 5 6 0 6 2 4 2 8 13

game 35 67 7 23 19 26 4 37 28 9 10 24 21 96

PLAYER STRT MIN FGM FGA FG3M FG3A FTM FTA OREB TREB AST STL BLK TOV PF PTS +/-

Tony Wroten True 33 6 11 1 4 8 11 0 3 10 1 1 4 1 21 -11

Brandon Davies False 23 7 9 1 2 3 4 0 3 0 3 0 3 3 18 -1

Hollis Thompson True 32 4 8 2 5 0 0 0 1 2 0 3 2 2 10 -17

Henry Sims True 27 4 9 0 0 1 2 1 4 2 0 1 0 1 9 -10

5.2.2. Basketball summaries

[code]

We now present a case of time-dependent data used for generating English and French statistic-focused
summaries of basketball games using information found in the SportSett:Basketball dataset (Thomson et
al.,2020). This dataset combines scores and performance measures about the teams and the players of
thousands of NBA games with human-authored summaries about these games.

The detailed statistics give information about the number of points, of attempted and made field goals, of
blocks, of assists, etc. The following table gives the box scores for the Philadelphia 76ers in their game against
the Miami Heat on November 1, 2014, the first game of the Train dataset which we use as a running example in
this paper. The heads of tables follow the same conventions as the one used for the official scores.

The following shows the data for the 4 (out of the 12) Philadephia players scoring the most points in this game.

In this case, the summary reports information about the team and the players in the current game. This implies
statistical procedures for determining the winners, the best players and showing turning points and important
differences about some aspects of the game (e.g. field goals, three-pointers, etc.) between teams in each
quarter.

Basketball game summaries also consider information from previous games to identify winning or losing
streaks or to mention that a performance is above average in the season. Season statistics are also used to
identify the outstanding players (about three or four out of more than twenty).

This is an example where data selection must consider not only the current but also others either the
past games of the season or even information gathered about the past seasons. The result of this selection
process is performed once and is used for both and .

Here is English summary produced by the system from the above data:

The Heat (2-0) , leader in their conference, defeated the 76ers (0-3) 114-96 at the Wells
Fargo Center in Philadelphia on Saturday.

https://github.com/lapalme/pyrealb/tree/main/demos/basketball
https://gem-benchmark.com/data_cards/sportsett_basketball
https://www.basketball-reference.com/boxscores/201411010PHI.html

The Heat led in all four quarters. Over the first quarter, the 76ers obtained better goals
percentage, a difference of 14%. Over the third quarter, the 76ers got better free throws
percentage, an advantage of 21%. The Heat dominated the 76ers for points by 14 over the
fourth quarter. In the game, the Heat obtained better three-pointers percentage, 50% to
30%.

Chris Bosh who was a starter led the way, posting 30 points (9-17 FG, 2-5 3Pt, 10-11 FT)
while adding four assists. Tony Wroten who started this game scored a game high with 21
points (6-11 FG, 1-4 3Pt, 8-11 FT) and ten assists and performed a double-double.

The Heat showed 49 percent from the field and 20-29 free throws. Mario Chalmers who was a
starter added 20 points. Luol Deng contributed 15 points with 7-for-11 FG. Shawne
Williams added 15 points (5-9 FG, 3-5 3Pt, 2-2 FT) while adding four assists. Dwyane Wade
had nine points (4-18 FG, 0-1 3Pt, 1-3 FT) while adding ten assists.

The 76ers showed 52 percent from the field and 19-26 attempts at the charity stripe and
committed 24 turnovers. Brandon Davies who was a starter ended up with 18 points with
7-for-9 FG. Luc Mbah a Moute recorded nine points with seven rebounds grabbed and three
assists. Malcolm Thomas had eight points in 19 minutes. Alexey Shved posted six points
(1-4 FG, 1-4 3Pt, 3-3 FT) while adding six assists.

The Heat' next game will be at home against the Toronto Raptors on Sunday. The 76ers' next game will be
at home against the Houston Rockets on Monday

The summary in French is the following

Le Heat (2-0) , meneurs dans leur conférence, a dominé les 76ers (0-3) 114-96 au stade
Wells Fargo Center samedi à Philadelphia.

Le Heat a mené pendant les quatre quarts. Durant le premier quart, les 76ers ont réussi
les meilleurs lancers en pourcentage, une différence de 14%. Pendant le troisième quart,
les 76ers ont réussi les meilleurs lancers francs en pourcentage, un avantage de 21%. Le
Heat a dominé les 76ers pour les points par 14 pendant le quatrième quart. Durant la
partie, le Heat a obtenu les meilleurs tirs à 3 points en pourcentage, 50% en comparaison
avec 30%.

Chris Bosh qui débutait la partie a réalisé une performance excellente comptant 30 points
(9-17 L, 2-5 L3, 10-11 LF) et quatre passes décisives. Tony Wroten qui débutait la partie
a obtenu le meilleur pointage du match avec 21 points (6-11 L, 1-4 L3, 8-11 LF) et dix
passes décisives et a terminé avec un double-double.

Le Heat a compté 49 pour cent de tirs réussis et 20 lancers francs sur 29. Mario Chalmers
qui figurait dans l'alignement de départ a contribué un efficace 20 points avec six tirs
réussis. Luol Deng a fini avec 15 points. Shawne Williams a enregistré 15 points (5-9 L,
3-5 L3, 2-2 LF) tout en ajoutant quatre passes décisives. Dwyane Wade a marqué neuf
points avec dix passes décisives.

Les 76ers ont compté 52 pour cent de tirs réussis et 19 lancers francs sur 26 et ont subi
24 pertes de ballon. Brandon Davies qui figurait dans l'alignement de départ a enregistré
18 points avec sept tirs réussis. Luc Mbah a Moute a fini avec neuf points avec sept
rebonds récupérés et trois passes décisives. Malcolm Thomas a ajouté huit points en 19
minutes. Alexey Shved a marqué six points avec six passes décisives.

À venir pour le Heat, un match à domicile contre Toronto. Pour leur prochain match, les
76ers joueront à la maison contre les Rockets de Houston lundi.

more details

5.3. Parallel generation of random data

This nodata-to-text example is nevertheless interesting because it illustrates the sentence modifications of
pyrealb applied similarly to both languages. Random variations of sentence patterns are generated to create
translation drill exercises. This is a command-line version of a jsRealB web application which is more user-
friendly to use, but the text generation algorithm is the same in both versions.

With pyrealb a sentence pattern can be parameterized using a lambda to change some of its words, inflections
(number and tense) and even its structure by negating it, making it passive or interrogative. For example, the
following definition in which the formal parameters are given arbitrary names but easier to remember in the
context of the syntactical structure.

This definition can be used to produce different sentences, as shown in the following calls with the
corresponding realizations. Lines 1-2 is a simple call changing terminals, lines 3-4 shows the negative future
form of the sentence and lines 5-6 shows a negative and tag-interrogative form of the sentence in the past
tense.

f = lambda n, child, eat, a, potato:\

 S(NP(D("the"), N(child).n(n)),

 VP(V(eat),

 NP(D(a), potato.n("p"))))

1

2

3

4

f("p","child","love","a",N("avocado")).realize()

=> 'The children love avocados. '

f("s","mother","cook","the",N("apple")).t("f").typ({"neg":True}).realize()

=> 'The mother will not cook the apples. '

f("s","uncle","eat","the",N("apple")).t("ps").typ({"neg":True,"int":"tag"}).realize()

=> 'The uncle did not eat the apples, did he? '

1

2

3

4

5

6

https://github.com/lapalme/pyrealb/tree/main/demos/basketball/docs/SportSettSum.md
http://rali.iro.umontreal.ca/JSrealB/current/demos/Bilinguo/index.html

5.3.1. Translation drill exercises [code]

To create translation drill exercises, parallel sentence patterns are called with equivalent parameters and
modified in the same way in the source and target languages. Thus two sentences structures can be created,
one corresponding to the translation of the other. The realization of the source structure is shown to the user,
while the tokens of the realization of the target structure are shuffled with some distractor words. The user
types some tokens to create a translation that is compared with the expected realization of the target
structure. Translation drills can be created in both translation directions by selecting which language is the
source.

The following shows two interactions with the system.

The data for this demo is a list of python dict s that define the parameterized sentence structure for both
languages with lists of alternatives for the parameters. The dict used in the previous example is shown below
(lines 6-23). The parallel pyreab structures are created by two lambda s (lines 8-11 and 12-15). These functions
are called by picking randomly in the lists of pairs of synonyms with their translation (lines 16-21) to assemble
the actual parameters for the functions. Distractors are picked from the unchosen target values. Syntactical
structures and the parameter values can differ in the source and target languages (see lines 20-21) but the
lambdas must have the same number of corresponding parameters.

Translate in English the sentences in French using some of the suggested words.

Type "end" to exit.

The child can love the watermelons.

', adorer, ., manger, un, melons, eau, ', les, frère, peut, d, enfant, L

 > L'enfant peut manger les melons d'eau.

 L'enfant peut adorer les melons d'eau.:KO

Will the child love the watermelons?

', enfant, t, -, adorera, un, ?, les, -, d, melons, ', soeur, eau, détester, L, il

 > L'enfant adorera-t-il les melons d'eau?

 L'enfant adorera-t-il les melons d'eau?:OK

The father will eat watermelons.

détester, père, enfant, eau, ', des, Le, d, ., mangera, le, melons

 > end

1

2

3

4

5

6

7

8

9

10

11

12

13

dets = [["un", "a"], ["le", "the"]]

numbers = [["s", "s"], ["p", "p"]]

relatives = [["père", "father"], ["frère", "brother"], ["soeur", "sister"],

 ["tante", "aunt"]]

{"id": "F-02",

 "level": 0,

 "fr": lambda n, enfant, manger, un, pommeDT:

 S(NP(D("le"), N(enfant).n(n)),

 VP(V(manger),

 NP(D(un), pommeDT.n("p")))),

1

2

3

4

5

6

7

8

9

10

11

https://github.com/lapalme/pyrealb/tree/main/demos/bilinguo

These parallel sentence patterns were created manually or adapted from an automatic transformation of the
output of the Stanza parser described in (Lapalme 2021). Although for the moment there are only 8 sentence
patterns, they can be realized in a variety of sentences when parameter, tense and sentence type variations are
taken into account. As shown in the web demo, a teacher can also determine the level of difficulty of sentences
going from simple affirmative sentences to complex passive interrogative forms.

6. What about GPT ?
GPT (Generative Pretrained Transformer) models have been used to generate many types of text, images and
music. These billion-parameter systems, trained on terabytes of internet data, can be used to answer questions
in a conversational manner.

We submitted the data for the examples of section 5 to the GPT instance of Microsoft Copilot (in November
2023) with appropriate prompts for text generation and translation (the appendix shows the complete
transcript) which produced the following outputs.

E2E challenge

“The Mill” is a pub situated in the riverside area, in proximity to “Raja Indian Cuisine”.
It serves English food and is known for its high price range. It is also family-friendly.

“Le Mill” est un pub situé dans la zone riverside, à proximité de “Raja Indian Cuisine”.
Il sert de la nourriture anglaise et est connu pour sa gamme de prix élevée.
Il est également adapté aux familles.

WebNLG Challenge 2020

Alan Bean, born on March 15, 1932, in Wheeler, Texas, was selected by NASA in 1963. He was part of the
Apollo 12 mission, which was operated by NASA. Alfred Worden served as the backup pilot for Apollo 12,
and David Scott was the commander of the mission.

For these two examples, the results are excellent and comparable to the output of best systems that
participated in these challenges. The output is more colloquial than the one produced by pyrealb and is well
formatted. These types of input-output pairs, which appeared in the ACL Anthology, were probably included in
the training set of the Transformer.

 "en": lambda n, child, eat, a, potato:

 S(NP(D("the"), N(child).n(n)),

 VP(V(eat),

 NP(D(a), potato.n("p")))),

 "params": [numbers,

 [["enfant", "child"], *relatives],

 [["manger", "eat"], ["adorer", "love"], ["détester", "hate"]],

 dets,

 [[lambda: NP(N("pomme"), PP(P("de"), N("terre"))), lambda: N("potato")],

 [lambda: NP(N("melon"), PP(P("de"), N("eau"))), lambda:

N("watermelon")]]]

}

12

13

14

15

16

17

18

19

20

21

22

http://rali.iro.umontreal.ca/JSrealB/current/demos/Bilinguo/index.html

We also submitted the data shown above for the weather reports and the basketball summaries generation for
which the results are impressive given the fact that the input was limited to a subset of the full data without
any context.

Weather reports

Here is the weather report based on the provided table:

From 5:00 to 15:00, there is a 10% chance of precipitation. The sky will be partially covered, with a
sky cover value ranging from 2 to 8. Temperatures will rise from 15°C at 5:00 to a high of 28°C at
14:00. The wind will be coming from the southwest with a speed of 10 km/h.

From 15:00 to 18:00, the chance of precipitation increases to 30%, with possible showers or even a
thunderstorm. The sky will be mostly covered, with a sky cover value of 8. Temperatures will
decrease to 25°C. The wind will continue from the southwest but will increase to a speed of 20
km/h.

From 18:00 to 20:00, temperatures will further decrease to 23°C. The wind will continue from the
southwest at a speed of 20 km/h.

Please note that the UV index will be 7.7 between 12:00 and 14:00, which is considered high. It's
recommended to wear protective clothing, a wide-brimmed hat, and UV-blocking sunglasses during
this time.

Please stay tuned for updates and stay safe!

!

Copilot generated a Markdown formatted rendering grouping information by time interval ending with a
smiley! In some cases, it combined time intervals with the corresponding temperatures. It also hallucinated a
recommandation for the high UV index.

Basketball summaries

During the game, a total of 96 points were scored. The team made 35 out of 67 field goal attempts, with 7
out of 23 successful three-point attempts. They also made 19 out of 26 free throw attempts.

In the first quarter (Q1), the team scored 30 points, making 13 out of 21 field goal attempts and 3 out of 8
three-point attempts. They made 1 out of 2 free throw attempts.

In the second quarter (Q2), the team scored 24 points, making 8 out of 15 field goal attempts. However,
they didn't make any three-point attempts in this quarter. They made 8 out of 12 free throw attempts.

In the third quarter (Q3), the team scored 29 points, making 10 out of 16 field goal attempts and 4 out of
8 three-point attempts. They made 5 out of 6 free throw attempts.

In the fourth quarter (Q4), the team scored 13 points, making 4 out of 15 field goal attempts. They didn't
make any three-point attempts in this quarter. They made 5 out of 6 free throw attempts.

The team collected a total of 37 rebounds, with 4 of them being offensive rebounds. They also had 28
assists, 9 steals, and 10 blocks. However, they turned the ball over 24 times and committed 21 personal
fouls.

In this case, given a box-score table with coded titles for columns and lines, Copilot managed to make sense of
abbreviations such as FG3M and FG3A. This is better than us, because not being a basketball fan, we had no
clue of what these codes meant. The text organisation is also good, because the results for the whole game
are shown before the ones for each quarter.

Given the information for the four players scoring the most points, the result was this text which is factually
correct, although a bit repetitive.

Here is a summary of each player's performance:

Tony Wroten: He started the game and played for 33 minutes. He made 6 out of 11 field goal
attempts, including 1 out of 4 three-point attempts. He also made 8 out of 11 free throw attempts.
He collected 3 total rebounds and provided 10 assists. He had 1 steal, 1 block, 4 turnovers, and 1
personal foul. He scored a total of 21 points but had a negative impact on the team's score with a -11
plus/minus.

Brandon Davies: He came off the bench and played for 23 minutes. He made 7 out of 9 field goal
attempts, including 1 out of 2 three-point attempts. He also made 3 out of 4 free throw attempts. He
collected 3 total rebounds and had 3 steals. He had 3 turnovers and 3 personal fouls. He scored a
total of 18 points and had a -1 plus/minus, indicating a nearly neutral impact on the team's score.

Hollis Thompson: He started the game and played for 32 minutes. He made 4 out of 8 field goal
attempts, including 2 out of 5 three-point attempts. He did not attempt any free throws. He collected
1 total rebound and provided 2 assists. He had 3 blocks, 2 turnovers, and 2 personal fouls. He scored
a total of 10 points but had a negative impact on the team's score with a -17 plus/minus.

Henry Sims: He started the game and played for 27 minutes. He made 4 out of 9 field goal attempts
and made 1 out of 2 free throw attempts. He collected 4 total rebounds and provided 2 assists. He
had 1 block, no turnovers, and 1 personal foul. He scored a total of 9 points and had a -10
plus/minus, indicating a negative impact on the team's score.

Of course, the results for the last two examples are difficult to compare with the pyrealb outputs because
Copilot was given only a small subset of the data without any context. But even there it managed to realize
excellent literal readings of the data.

In our experiments, each conversation turn took between 4 or 5 seconds of real time and probably costed a
few dozens of cents. This is good enough for demoing, but this would probably be prohibitive in a production
setting. This type of technology is just beginning and will surely be improved in terms in cost and execution
time over the years, perhaps even months. pyrealb is greener as it runs very fast (one or two milliseconds per
text) with limited memory requirements on a stock laptop without the need for a GPU. To be fair, we should
take into account the development time as well. An NLG system like GPT has a development time that is
amortized over all its possible applications, but it has a high cost of inference. For pyrealb, we have a long
development time and almost none for inference.

Even though these black box systems show impressive results, they can be unpredictable (like humans!) During
our short experiments we noticed that, when given the same prompt, Copilot did not always return exactly the
same results, this can be problematic in some cases. The main advantage of a symbolic system is the control
on the generated output for either the formulation or the phrasing. It also lend itself to interpretations,

https://www.digitaltrends.com/computing/chatgpt-cost-to-operate/

debugging and hardcoding of business rules. Reiter (2023) discusses some pros and cons of using large
language models in a data-to-text context.

7. Conclusion
This document has shown pyrealb brought into play in different data-to-text contexts to convey information in
French and English reliably through a convenient formalism that is familiar to linguists. The pyrealb demo
directory shows other examples of features in a unilingual context, many of them can be run in either French
or English but not in strictly bilingual mode. This approach could be extended to other languages provided that
extensive lexicons and programs for implementing grammar rules are developed for them.

It is often argued that the drawback of a symbolic approach to generation is that sentence patterns must be
developed manually by studying the corpus of reference texts. But we found this approach easier, faster and
more fun than fine-tuning the parameters of a learning algorithm or tweaking prompts for an LLM. The fact the
pyrealb caters automatically to conjugation, declension, agreements, elision, punctuation and formatting (HTML
or not) greatly simplifies the building of sentence patterns to realize production quality texts. Patterns are
defined at a relatively abstract level and can be realized in a variety of ways. It would be interesting and
challenging to explore the possibility of learning sentence patterns from corpora.

The objective of this document was to demonstrate the organization of the generation process with pyrealb.
Outside of a brief comparison with an instance of a GPT, It did not discuss any industrial exploitation or
evaluation, which is an independent but important endeavor.

8. Acknowledgements
We thank Fabrizio Gotti and Ehud Reiter for interesting suggestions about a previous version of this paper.

9. References
Ondřej Dušek, Jekaterina Novikova, Verena Rieser, Evaluating the state-of-the-art of End-to-End Natural
Language Generation: The E2E NLG challenge, Computer Speech & Language, Volume 59, 2020, Pages 123-
156, ISSN 0885-2308, https://doi.org/10.1016/j.csl.2019.06.009.

Albert Gatt and Ehud Reiter, 2009. SimpleNLG: A realisation engine for practical applications. In Proceedings
of the 12th European Workshop on Natural Language Generation (ENLG 2009), pages 90–93, Athens,
Greece, March 2009. Association for Computational Linguistics.

Kay, Martin. “The Proper Place of Men and Machines in Language Translation.” Machine Translation 12, no.
1/2 (1997): 3–23. http://www.jstor.org/stable/40009025. [Reproduction of a Xerox Parc Working Paper that
appeared in 1980].

G. Lapalme. Validation of Universal Dependencies by regeneration. In Proceedings of the Fifth Work- shop
on Universal Dependencies (UDW, SyntaxFest 2021), pages 109–120, Sofia, Bulgaria, Dec. 2021. Association
for Computational Linguistics.

G. Lapalme. The jsRealB Text Realizer: Organization and Use Cases Revised version, May 2022,

https://github.com/lapalme/pyrealb/tree/main/demos
https://doi.org/10.1016/j.csl.2019.06.009
http://www.jstor.org/stable/40009025
https://aclanthology.org/2021.udw-1.9
https://arxiv.org/abs/2012.15425

François Lareau, Florie Lambrey, Ieva Dubinskaite, Daniel Galarreta-Piquette, and Maryam Nejat. 2018.
GenDR: A Generic Deep Realizer with Complex Lexicalization. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Aarne Ranta, Grammatical Framework: Programming with Multilingual Grammars, CSLI Publications,
Stanford, 2011, 340 pp, ISBN-10: 1-57586-626-9 (Paper), 1-57586-627-7 (Cloth).

E. Reiter and R. Dale, Building natural language generation systems, Cambridge University Press, 2000.

E. Reiter, LLMs and Data-to-text, Ehud Reiter's Blog, June 29 2023.

Ashish Upadhyay and Stewart Massie. 2022. Content Type Profiling of Data-to-Text Generation Datasets.
In Proceedings of the 29th International Conference on Computational Linguistics, pages 5770–5782, Gyeongju,
Republic of Korea. International Committee on Computational Linguistics.

P.-L. Vaudry and G. Lapalme, Adapting SimpleNLG for bilingual English - French realisation, in A. f. C.
Linguistics, ed., 14th European Workshop on Natural Language Generation, Sofia, Bulgaria, 2013, pp. 183-
187.

10. Appendix: finding and exploring data
In a real application, the data is usually available although not always easy to collect, filter and curate. One
should never underestimate the difficulty of getting high (or even moderate) quality data that often appears in
various formats on different devices.

To develop new systems and compare their results with the state of the art, it can be useful to use existing data
sets. For NLG, many of these data sets are associated with reference texts that can be exploited as targets for
generation, corpus analysis or training machine learning systems. Most of these texts were authored by
humans directly or by crowdsourcing, but care must be taken because some of them were machine generated.

Here are some useful sources of NLG data:

Data sets for NLG from the Natural Language Generation Portal

Data cards from the GEM benchmark environment focusing on NLG evaluation

Hugging Face Datasets is a source of well-organized datasets with an efficient python API. At the time of
writing (October 2023), there were more than 70,000 datasets (more than 1,500 being tagged Text
Generation!), so it is best to search a data set by name.

Always take some time to look at the data and check the types and range of values. We have encountered
JSON files in which all numeric values had been stored as strings; given that "10" < "2" is True and
"10"+"2" equals "102" , this can give rise to unexpected results or sorting.

Here are some validation tools for text-based data, ignoring databases which have their own validation
mechanisms:

JSON: JSON Schema, JSON-rnc

XML: Relax-NG

CSV: CSV File Validator

https://aclanthology.org/L18-1478
https://ehudreiter.com/2023/06/29/llms-and-data-to-text/
https://aclanthology.org/2022.coling-1.507
https://ehudreiter.com/2017/05/09/weathergov/
https://aclweb.org/aclwiki/Data_sets_for_NLG
https://gem-benchmark.com/data_cards
https://huggingface.co/datasets
https://json-schema.org/
https://github.com/rali-udem/json-rnc
https://relaxng.org/
https://www.npmjs.com/package/csv-file-validator

To explore and extract data:

JSON: jq is very efficient for huge JSON files but its syntax can be a bit difficult to grasp at the start

manual

excellent introduction although now full of ads...

XML: XSLT, ExamineXML

CSV : awk

11. Appendix : Conversation with Microsoft Copilot
Transcript made in November 2023 selecting the More Precise mode

Question:
I want to write a completely factual restaurant description for a guide. It is important that the description be
entirely factual, and be one or two-sentence long. This is what I know about the restaurant: name="The Mill"
near="Raja Indian Cuisine" customer rating="unspecified" priceRange="high" area="riverside"
familyFriendly="yes" food="English" eatType="pub"
Could you generate this restaurant description in English?

Bing:
"The Mill" is a family-friendly pub located in the riverside area, near "Raja Indian Cuisine". Known for its high-
end English cuisine, it provides a warm and welcoming atmosphere for all patrons.

Question:
Could you rewrite this without any promotional tone, and be entirely factual?

Bing:
“The Mill” is a pub situated in the riverside area, in proximity to “Raja Indian Cuisine”. It serves English food and
is known for its high price range. It is also family-friendly.

Question:
Very good. Could you generate a French translation of your last answer?

Bing:
“Le Mill” est un pub situé dans la zone riverside, à proximité de “Raja Indian Cuisine”. Il sert de la nourriture
anglaise et est connu pour sa gamme de prix élevée. Il est également adapté aux familles.

Question:
Could you write a very short factual paragraph from this list of facts:
(Apollo_12 , backupPilot , Alfred_Worden) and
(Alan_Bean , mission , Apollo_12) and
(Apollo_12 , operator , NASA) and
(Apollo_12 , commander , David_Scott) and
(Alan_Bean , birthPlace , Wheeler,_Texas) and
(Alan_Bean , selectedByNasa , 1963) and
(Alan_Bean , birthDate , "1932-03-15").

https://jqlang.github.io/jq/manual/v1.7/
https://www.baeldung.com/linux/jq-command-json
https://www.w3.org/TR/xslt-30/
http://www.iro.umontreal.ca/~lapalme/ExamineXML/
https://www.gnu.org/software/gawk/manual/gawk.html

lease don't add any additional facts to your answer. Stick to the facts expressed in my question.

Bing:
Alan Bean, born on March 15, 1932, in Wheeler, Texas, was selected by NASA in 1963. He was part of the Apollo
12 mission, which was operated by NASA. Alfred Worden served as the backup pilot for Apollo 12, and David
Scott was the commander of the mission.

Question:
Very good. Could you generate a French translation of your last answer?

Bing:
Alan Bean, né le 15 mars 1932 à Wheeler, au Texas, a été sélectionné par la NASA en 1963. Il a fait partie de la
mission Apollo 12, qui était opérée par la NASA. Alfred Worden a servi de pilote de secours pour Apollo 12, et
David Scott était le commandant de la mission.

Question:
Given the following information triples about a university:

Visvesvaraya_Technological_University | city | Belgaum
Acharya_Institute_of_Technology | established | 2000
Acharya_Institute_of_Technology | motto | "Nurturing Excellence"
Acharya_Institute_of_Technology | state | Karnataka
Acharya_Institute_of_Technology | country | "India"
Acharya_Institute_of_Technology | campus | "In Soldevanahalli, Acharya Dr. Sarvapalli Radhakrishnan Road,
Hessarghatta Main Road, Bangalore – 560090."
Acharya_Institute_of_Technology | affiliation | Visvesvaraya_Technological_University.

Describe this institution.

Bing:
The Acharya Institute of Technology is an educational institution located in India, specifically in the state of
Karnataka. It was established in the year 2000 and is situated in Soldevanahalli, on Acharya Dr. Sarvapalli
Radhakrishnan Road, Hessarghatta Main Road, Bangalore – 560090. The institute's motto is "Nurturing
Excellence". It is affiliated with the Visvesvaraya Technological University, which is based in the city of Belgaum.

Question:
Given this weather information table:

tomorrow (6h,18h) fpto12-2018-07-18-2000-r1209c :: 2018-07-18 16:00:00

precipitation-type [15h,0h):[showers, [15h,0h):[thunderstorm]]

precipitation-probability [5h,15h):[10], [15h,18h):[30]

sky-cover [5h,11h):[2, 2], [11h,15h):[2, 8], [15h,18h):[8, 8]

temperatures : [5h,8h):[15], [8h,11h):[23], [11h,14h):[28], [14h,17h):[25], [17h,20h):[23]

uv-index [12h,14h):[7.7]

wind [0h,12h):[sw, speed, 10], [12h,20h):[sw, speed, 20]

Game FGM FGA FG3M FG3A FTM FTA OREB TREB AST STL BLK TOV PF PTS

Q1 13 21 3 8 1 2 2 10 10 2 5 6 30

Q2 8 15 0 2 8 12 1 11 7 1 1 4 24

Q3 10 16 4 8 5 6 1 10 9 2 2 6 29

Q4 4 15 0 5 5 6 0 6 2 4 2 8 13

game 35 67 7 23 19 26 4 37 28 9 10 24 21 96

can you produce a weather report.

Bing:Here is the weather report based on the provided table:

From 5:00 to 15:00, there is a 10% chance of precipitation. The sky will be partially covered, with a sky
cover value ranging from 2 to 8. Temperatures will rise from 15°C at 5:00 to a high of 28°C at 14:00. The
wind will be coming from the southwest with a speed of 10 km/h.

From 15:00 to 18:00, the chance of precipitation increases to 30%, with possible showers or even a
thunderstorm. The sky will be mostly covered, with a sky cover value of 8. Temperatures will decrease to
25°C. The wind will continue from the southwest but will increase to a speed of 20 km/h.

From 18:00 to 20:00, temperatures will further decrease to 23°C. The wind will continue from the
southwest at a speed of 20 km/h.

Please note that the UV index will be 7.7 between 12:00 and 14:00, which is considered high. It's
recommended to wear protective clothing, a wide-brimmed hat, and UV-blocking sunglasses during this
time.

Please stay tuned for updates and stay safe!

!

Question:
Given the following basketball box scores:

Describe what happenned during this game.

Bing:
During the game, a total of 96 points were scored. The team made 35 out of 67 field goal attempts, with 7 out
of 23 successful three-point attempts. They also made 19 out of 26 free throw attempts.

PLAYER STRT MIN FGM FGA FG3M FG3A FTM FTA OREB TREB AST STL BLK TOV PF PTS +/-

Tony Wroten True 33 6 11 1 4 8 11 0 3 10 1 1 4 1 21 -11

Brandon Davies False 23 7 9 1 2 3 4 0 3 0 3 0 3 3 18 -1

Hollis Thompson True 32 4 8 2 5 0 0 0 1 2 0 3 2 2 10 -17

Henry Sims True 27 4 9 0 0 1 2 1 4 2 0 1 0 1 9 -10

In the first quarter (Q1), the team scored 30 points, making 13 out of 21 field goal attempts and 3 out of 8
three-point attempts. They made 1 out of 2 free throw attempts.

In the second quarter (Q2), the team scored 24 points, making 8 out of 15 field goal attempts. However, they
didn't make any three-point attempts in this quarter. They made 8 out of 12 free throw attempts.

In the third quarter (Q3), the team scored 29 points, making 10 out of 16 field goal attempts and 4 out of 8
three-point attempts. They made 5 out of 6 free throw attempts.

In the fourth quarter (Q4), the team scored 13 points, making 4 out of 15 field goal attempts. They didn't make
any three-point attempts in this quarter. They made 5 out of 6 free throw attempts.

The team collected a total of 37 rebounds, with 4 of them being offensive rebounds. They also had 28 assists, 9
steals, and 10 blocks. However, they turned the ball over 24 times and committed 21 personal fouls.

Question:
Given the following basketball box scores for players:

Describe the performance of each player.

Bing:
Here is a summary of each player's performance:

Tony Wroten: He started the game and played for 33 minutes. He made 6 out of 11 field goal attempts,
including 1 out of 4 three-point attempts. He also made 8 out of 11 free throw attempts. He collected 3
total rebounds and provided 10 assists. He had 1 steal, 1 block, 4 turnovers, and 1 personal foul. He
scored a total of 21 points but had a negative impact on the team's score with a -11 plus/minus.

Brandon Davies: He came off the bench and played for 23 minutes. He made 7 out of 9 field goal
attempts, including 1 out of 2 three-point attempts. He also made 3 out of 4 free throw attempts. He
collected 3 total rebounds and had 3 steals. He had 3 turnovers and 3 personal fouls. He scored a total of
18 points and had a -1 plus/minus, indicating a nearly neutral impact on the team's score.

Hollis Thompson: He started the game and played for 32 minutes. He made 4 out of 8 field goal attempts,
including 2 out of 5 three-point attempts. He did not attempt any free throws. He collected 1 total
rebound and provided 2 assists. He had 3 blocks, 2 turnovers, and 2 personal fouls. He scored a total of 10
points but had a negative impact on the team's score with a -17 plus/minus.

Henry Sims: He started the game and played for 27 minutes. He made 4 out of 9 field goal attempts and
made 1 out of 2 free throw attempts. He collected 4 total rebounds and provided 2 assists. He had 1 block,
no turnovers, and 1 personal foul. He scored a total of 9 points and had a -10 plus/minus, indicating a
negative impact on the team's score.

Question:
Can you report only the outstanding performances of each player from your previous response.

Bing:
Sure, here are the outstanding performances of each player:

Tony Wroten: He scored 21 points, made 6 out of 11 field goal attempts, and had 10 assists.

Brandon Davies: He scored 18 points and made 7 out of 9 field goal attempts.

Hollis Thompson: He made 3 blocks.

Henry Sims: He had no turnovers.

These are the highlights based on the box scores provided. Please note that "outstanding" can be subjective
and may vary depending on individual interpretation.

	Contexts of application
	What is data-to-text ?

	Multilingual realizers
	pyrealb
	Useful tools for data-to-text generation
	Challenges for bilingual generation

	Organizing the realization process with pyrealb
	Common phrase structure
	Different phrase structures

	Use cases
	Realization of all the data
	E2E challenge
	WebNLG Challenge 2020

	Realization of a subset of the data
	Weather reports
	Basketball summaries

	Parallel generation of random data
	Translation drill exercises [code]

	What about GPT ?
	Conclusion
	Acknowledgements
	References
	Appendix: finding and exploring data
	Appendix : Conversation with Microsoft Copilot

