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Abstract

We describe a special type of deep contex-
tualized word representation that is learned
from distant supervision annotations and dedi-
cated to named entity recognition. Our exten-
sive experiments on 7 datasets show system-
atic gains across all domains over strong base-
lines, and demonstrate that our representation
is complementary to previously proposed em-
beddings. We report new state-of-the-art re-
sults on CONLL and ONTONOTES datasets.

1 Introduction

Contextualized word representations are nowa-
days a resource of choice for most NLP tasks (Pe-
ters et al., 2018). These representations are trained
with unsupervised language modelling (Jozefow-
icz et al., 2016), masked-word prediction (Devlin
et al., 2018), or supervised objectives like ma-
chine translation (McCann et al., 2017). Despite
their strength, best performances on downstream
tasks (Akbik et al., 2018; Lee et al., 2018; He
et al., 2018) are always obtained when these rep-
resentations are stacked with traditional (classic)
word embeddings (Mikolov et al., 2013; Penning-
ton et al., 2014).

Our main contribution in this work is to re-
visit the work of Ghaddar and Langlais (2018a)
that explores distant supervision for learning clas-
sic word representations, used later as features for
Named Entity Recognition (NER). Motivated by
the recent success of pre-trained language model
embeddings, we propose a contextualized word
representation trained on the distant supervision
material made available by the authors. We do so
by training a model to predict the entity type of
each word in a given sequence (e.g. paragraph).

We run extensive experiments feeding our rep-
resentation, along side with previously proposed
traditional and contextualized ones, as features to

a vanilla Bi-LSTM-CRF (Ma and Hovy, 2016).
Results shows that our contextualized represen-
tation leads to significant boost in performances
on 7 NER datasets of various sizes and domains.
The proposed representation surpasses the one
of Ghaddar and Langlais (2018a) and is com-
plementary to popular contextualized embeddings
like ELMo (Peters et al., 2018).

By simply stacking various representations,
we report new state-of the-art performances on
CONLL-2003 (Tjong Kim Sang and De Meulder,
2003) and ONTONOTES 5.0 (Pradhan et al., 2013)
with a F1 score of 93.22 and 89.95 respectively.

2 Related Work

Pre-trained contextualized word-embeddings have
shown great success in NLP due to their ability
to capture both syntactic and semantic properties.
ELMo representations (Peters et al., 2018) are
built from internal states of forward and backward
word-level language models. Akbik et al. (2018)
showed that pure character-level language mod-
els can also be used. Also, McCann et al. (2017)
used the encoder of a machine translation model to
compute contextualized representations. Recently,
(Devlin et al., 2018) proposed BERT, an encoder
based on the Transformer architecture (Vaswani
et al., 2017). To overcome the unidirectionality of
the language model objective, the authors propose
two novel tasks for unsupervised learning: masked
words and next sentence prediction.

Ghaddar and Langlais (2018a) applied distant
supervision (Mintz et al., 2009) in order to in-
duce traditional word representations. They used
WiFiNE1 (Ghaddar and Langlais, 2018b, 2017),
a Wikipedia dump with massive amount of auto-
matically annotated entities, using the fine-grained

1http://rali.iro.umontreal.ca/rali/en/
wikipedia-lex-sim

http://rali.iro.umontreal.ca/rali/en/wikipedia-lex-sim
http://rali.iro.umontreal.ca/rali/en/wikipedia-lex-sim
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tagset proposed in (Ling and Weld, 2012). Mak-
ing use of Fasttext (Bojanowski et al., 2016), they
embedded words and (noisy) entity types in this
resource into the same space from which they
induced a 120-dimensional word-representation,
where each dimension encodes the similarity of a
word with one of the 120 types they considered.
While the authors claim the resulting representa-
tion captures contextual information, they do not
specifically train it to do so. Our work revisits pre-
cisely this.

3 Data and Preprocessing

We leverage the entity type annotations in WiFiNE
which consists of 1.3B tokens annotated with
159.4M mentions, which cover 15% of the to-
kens. A significant amount of named enti-
ties such as person names and countries can
actually be resolved via their mention tokens
only (Ghaddar and Langlais, 2016a,b). With the
hope to enforce context, we use the fine-grained
type annotation available in the resource (e.g.
/person/politician). Also, inspired by the
recent success of masked-word prediction (Devlin
et al., 2018), we further apply preprocessing to the
original annotations by (a) replacing an entity by
a special token [MASK] with a probability of 0.2,
and (b) replacing primary entity mentions, e.g. all
mentions of Barack Obama within its dedicated
article, by the special mask token with a probabil-
ity of 0.5. In WiFiNE, named-entities that do not
have a Wikipedia article (e.g. Malia Ann in Fig-
ure 2) are left unannotated, which introduces false
negatives. Therefore, we mask non-entity words
when we calculate the loss.

Although contextualized representation learn-
ing has access to arbitrary large contexts (e.g.
the document), in practice representations mainly
depend on sentence level context (Chang et al.,
2019). To overcome this limitation to some extent,
we use the Wikipedia layout provided in WiFiNE
to concatenate sentences of the same paragraphs,
sections and document up to a maximum size of
512 tokens.

An illustration of the preprocessing is depicted
in Figure 2 where for the sake of space, a single
sentence is being showed. Masked entities encour-
age the model to learn good representations for
non-entity words even if they do not participate
in the final loss. Because our examples are sec-
tions and paragraphs, the model will be forced to

encode sentence- as well as document-based con-
text. In addition, training on (longer) paragraphs
is much faster and memory efficient than batching
sentences.

4 Learning our Representation

We use a model (Figure 1) composed of a multi-
layer bidirectional encoder that produces hidden
states for each token in the input sequence. At
the output layer, the last hidden states are fed into
a softmax layer for predicting entity types. Fol-
lowing (Strubell et al., 2017), we used as our en-
coder the Dilated Convolutional Neural Network
(DCNN) with an exponential increasing dilated
width. DCNN was first proposed by (Yu and
Koltun, 2015) for image segmentation, and was
successfully deployed for NER by (Strubell et al.,
2017). The authors show that stacked layers of
DCNN that incorporate document context have
comparable performance to Bi-LSTM while be-
ing 8 times faster. DCNN with a size 3 convolu-
tion window needs 8 stacked layers to incorporate
the entire input context of a sequence of 512 to-
kens, compared to 255 layers using a regular CNN.
This greatly reduces the number of parameters and
makes training more scalable and efficient. Be-
cause our examples are paragraphs rather than sen-
tences, we employ a self-attention mechanism on
top of DCNN output with the aim to encourage the
model to focus on salient global information. In
this paper, we adopt the multi-head self-attention
formulation by Vaswani et al. (2017). Compar-
atively, Transformer-based architectures (Devlin
et al., 2018) require a much larger2 amount of re-
sources and computations. To improve the han-
dling of rare and unknown words, our input se-
quence consists of WordPiece embeddings (Wu
et al., 2016) as used by Devlin et al. (2018); Rad-
ford et al. (2018). We use the same vocabulary dis-
tributed by the authors, as it was originally learned
on Wikipedia. Model parameters and training de-
tails are provided in Appendix A.1.

5 Experiments on NER

5.1 Datasets

To compare with state-of-the-art models, we
consider two well-established NER benchmarks:
CONLL-2003 (Tjong Kim Sang and De Meulder,
2003) and ONTONOTES 5.0 (Pradhan et al., 2012).

2Actually prohibitive with our single GPU computer.
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Figure 1: Illustration of the architecture of the model used for learning our representation. It consists of
stacked layers of dilated convolutional neural network followed by a self-attention layer. The input is
a sequence of tokens with a maximum length of 512, where the output is the associated entity type se-
quence. We use the hidden state of the last DCNN layer and the self-attention layer as our representation.

before [Obama] first daughter, Malia Ann, was
born in [July 1998] at [Chicago], [Illinois].

after [MASK] first daughter, Malia Ann, was
born in [July 1998] at [Chicago], [Illinois].

tags /person/politician X X X X X X X

X X /date /date X /location/city
X /location/province X

Figure 2: Sequence before and after masking,
along with output tags. X indicates that no pre-
diction is made for the corresponding token.

To further determine how useful our learned repre-
sentation is on other domains, we also considered
three additional datasets: WNUT17 (Derczyn-
ski et al., 2017) (social media), I2B2 (Stubbs and
Uzuner, 2015) (biomedical), and FIN (Alvarado
et al., 2015) (financial). In addition, we per-
form an out-domain evaluation for models trained
on CONLL-2003 and tested on WIKIGOLD (Bal-
asuriya et al., 2009) (wikipedia) and WEB-
PAGES (Ratinov and Roth, 2009) (web pages).
Statistics of the datasets are provided in Ap-
pendix A.2.

5.2 Input Representations
Our NER model is a vanilla Bi-LSTM-CRF (Ma
and Hovy, 2016) that we feed with various repre-
sentations (hereafter described) at the input layer.

Model parameters and training details are pro-
vided in Appendix A.3.

5.2.1 Word-Shape Features
We use 7 word-shape features: allUpper,
allLower, upperFirst, upperNotFirst,
numeric, punctuation or noAlphaNum.
We randomly allocate a 25-dimensional vector for
each feature, and learn them during training.

5.2.2 Traditional Word Embeddings
We use the 100-dimensional case sensitive
SSKIP (Ling et al., 2015) word embeddings. We
also compare with the previously described 120-
dimensional vector representation of (Ghaddar
and Langlais, 2018a), they call it LS.

5.2.3 Contextualized Word Embeddings
We tested 3 publicly available contextualized
word representations: ELMo (Peters et al., 2018):
dim = 1024, layers = 3; FLAIR (Akbik et al.,
2018): d = 2048, l = 1; and BERT (Devlin
et al., 2018): d = 1024, l = 4. For the latter,
we use the hidden state of the 4 last layers of the
Large model. For the proposed representation,
we use the hidden state of the last DCNN layer and
the self-attention layer as feature input (d = 384,
l = 2). Following Peters et al. (2018), each rep-
resentation (including ours) is the weighted sum
of the hidden layers, where weights are learned
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Conll Ontonotes
X LS ours X LS ours

ws+sskip 90.37 91.23 (+0.9) 91.76 (+1.4) 86.44 87.95 (+0.9) 88.13 (+0.9)
ws+sskip+elmo 92.47 92.49 (+0.0) 92.82 (+0.4) 89.37 89.44 (+0.1) 89.68 (+0.3)
ws+sskip+elmo+flair 92.69 92.75 (+0.1) 93.22 (+0.5) 89.55 89.59 (+0.0) 89.73 (+0.2)
ws+sskip+elmo+flair+bert 92.91 92.87 (+0.0) 93.01 (+0.1) 89.66 89.70 (+0.0) 89.95 (+0.3)
(Peters et al., 2018) 92.20 -
(Clark et al., 2018) 92.61 88.81
(Devlin et al., 2018) 92.80 -

Table 1: F1 scores over five runs on CONLL and ONTONOTES test set of ablation experiments. We
evaluate 4 baselines without additional embeddings (column X ) and with LS embeddings (Ghaddar and
Langlais, 2018a) or ours. Figures in parenthesis indicate the gain over the baselines.

during training. We use concatenation to stack
the resulting representations in the input layer of
our vanilla Bi-LSTM-CRF model, since Coates
and Bollegala (2018) show that concatenation per-
forms reasonably well in many NLP tasks.

6 Experiments

6.1 Comparison to LS embeddings

Since we used the very same distant supervision
material for training our contextual representation,
we compare it to the one of Ghaddar and Langlais
(2018a). We concentrate on CONLL-2003 and
ONTONOTES 5.0, the datasets most often used for
benchmarking NER systems.

Table 1 reports results of 4 strong baselines
that use popular embeddings (column X ), further
adding either the LS representation (Ghaddar and
Langlais, 2018a) or ours. In all experiments, we
report the results on the test portion of models per-
forming the best on the official development set of
each dataset. As a point of comparison, we also
report 2018 state-of-the-art systems.

First we observe that adding our representation
to all baseline models leads to systematic improve-
ments, even for the very strong baseline which ex-
ploits all three contextual representations (fourth
line). The LS representation does not deliver such
gains, which demonstrates that our way of ex-
ploiting the very same distant supervision mate-
rial is more efficient. Second, we see that adding
our representation to the weakest baseline (line 1),
while giving a significant boost, does not deliver
as good performance as when adding other contex-
tual embeddings. Nevertheless, combining all em-
beddings yields state-of-the-art on both CONLL
and ONTONOTES.

6.2 Comparing Contextualized Embeddings

Table 2 reports F1 scores on the test portion of
the 7 datasets we considered, for models trained
with different embedding combinations. Our base-
line is composed of word-shape and traditional
(SSKIP) embeddings. Then, contextualized word
representations are added greedily, that is, the rep-
resentation that yields the largest gain when con-
sidered is added first and so forth.

Expectedly, ELMo is the best representation to
add to the baseline configuration, with significant
F1 gains for all test sets. We are pleased to ob-
serve that the next best representation to consider
is ours, significantly outperforming FLAIR. This is
likely due to the fact that both FLAIR and ELMo
embeddings are obtained by training a language
model, therefore encoding similar information.

Continuously aggregating other contextual em-
beddings (FLAIR and BERT) leads to some im-
provements on some datasets, and degradations on
others. In particular, stacking all representations
leads to the best performance on 2 datasets only:
ONTONOTES and I2B2. Those datasets are large,
domain diversified, and have more tags than other
ones. In any case, stacking word-shapes, SSKIP,
ELMo and our representation leads to a strong
configuration across all datasets. Adding our rep-
resentation to ELMo, actually brings noticeable
gains (over 2 absolute F1 points) in out-domain
settings, a very positive outcome.

Surprisingly, BERT did not perform as we ex-
pected, since they bring minor (ONTONOTES) or
no (CONLL) improvement. We tried to repro-
duce the results of fine-tuned and feature-based
approaches reported by the authors on CONLL,
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In Domain Out Domain
Conll Onto WNUT FIN I2B2 WikiGold WebPage

WS+SSKIP 90.73 86.44 32.30 81.82 86.41 66.03 45.13
+ELMo 92.47 89.37 44.15 82.03 94.47 76.34 54.45

+Ours 92.96 89.68 47.40 83.00 94.75 78.51 57.23
+FLAIR 93.22 89.73 46.80 83.11 94.79 77.77 56.20

+BERT 93.02 89.97 46.47 81.94 94.92 78.06 56.84

Table 2: Mention-level F1 scores. The baseline (first line) uses word shape and traditional (classic)
embeddings. Variants stacking various representations are presented in decreasing order of F1 return. So
for instance, ELMo is the best representation to add to the baseline one.

but as many others,3 our results were disappoint-
ing.

6.3 Analysis

We suspect one reason for the success of our repre-
sentation is that it captures document wise context.
We inspected the words the most attended accord-
ing to the the self-attention layer of some docu-
ments, an excerpt of which is reported in Figure 3.
We observe that attended words in the document
are often related to the topic of the document.

84 economic Stock, mark, Wall, Treasury, bond
148 sport World, team, record, game, win
201 news truck, Fire, store, hospital, arms

Figure 3: top 5 attended words for some randomly
picked documents in the dev set of CONLL. Col-
umn 1 indicate document number, while column 2
is our appreciation of the document topic.

We further checked whether the gain could be
imputable to the fact that WiFiNE contains the
mentions that appear in the test sets we consid-
ered. While this of course happens (for instance
38% of the test mentions in ONTONOTES are in
the resource), the performance on those mentions
with our representation is no better than the per-
formance on other mentions.

7 Conclusion and Future Work

We have explored the idea of generating a contex-
tualized word representation from distant super-
vision annotations coming from Wikipedia, im-
proving over the static representation of Ghad-
dar and Langlais (2018a). When combined with

3https://github.com/google-research/
bert/issues?utf8=%E2%9C%93&q=NER

popular contextual ones, our representation leads
to state-of-the-art performance on both CONLL
and ONTONOTES. We are currently analyzing the
complementarity of our representation to others.

We plan to investigate tasks such as coref-
erence resolution and non-extractive machine
reading comprehension, where document level
context and entity type information is crucial.
The source code and the pre-trained models
we used in this work are publicly available
at http://rali.iro.umontreal.ca/
rali/en/wikipedia-ds-cont-emb
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A Appendices

A.1 Training Representation
We use 8 stacked layers of DCNN to encode input
sequences of maximum length of 512. WordPiece
and position embeddings, number of filters in each
dilated layer and self-attention hidden units were
all set to 384. For self-attention, we use 6 attention
heads and set intermediate hidden unit to 512. We
apply a dropout mask (Srivastava et al., 2014) with
a probability of 0.3 at the end of each DCNN layer,
and at the input and output of the self-attention
layer. We adopt the Adam (Kingma and Ba, 2014)
optimization algorithm, set the initial learning rate
to 1e−4, and use an exponential decay. We train
our model up to 1.5 millions steps with mini-batch
size of 64. We implemented our system using the
Tensorflow (Abadi et al., 2016) library, and train-
ing requires about 5 days on a single TITAN XP
GPU.

A.2 Dataset
Table 3 list the dataset used in this study do-
main, label size, and number of mentions in
train/dev/test portions.

# entities
Dataset Domain Types train dev test
CONLL news 4 23499 5942 5648
ONTONOTES news 18 81828 11066 11257
WNUT17 tweet 6 1975 836 1079
I2B2 bio 23 11791 5453 11360
FIN finance 4 460 - 120
WIKIGOLD wikipedia 4 - - 3558
WEBPAGES web 4 - - 783

Table 3: Statistics on the datasets used in our ex-
periments.

We used the last 2 datasets to perform an out-of-
domain evaluation of CONLL models. Those are
small datasets extracted from Wikipedia articles
and web pages respectively, and manually anno-
tated following CONLL-2003 annotation scheme.

A.3 NER Model Training
Our system is a single Bi-LSTM layer with a CRF
decoder, with 128 hidden units for all datasets
except for ONTONOTES and I2B2 where we use
256 hidden units. For each learned representa-
tions (ours, ELMo, FLAIR, BERT), we use the
weighted sum of all layers as input, where weights
are learned during training. For each word, we

stack the embeddings by concatenating them to
form the input feature of the encoder.

Training is carried out by mini-batch of stochas-
tic gradient descent (SGD) with a momentum of
0.9 and a gradient clipping of 5.0. To mitigate
over-fitting, we apply a dropout mask with a prob-
ability of 0.7 on the input and output vectors of the
Bi-LSTM layer. The mini-batch is 10 and learning
rate is 0.011 for all datasets. We trained the mod-
els up to 63 epochs and use early stopping based
on the official development set. For FIN, we ran-
domly sampled 10% of the train set for develop-
ment.


