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1. CONFIDENCE ESTIMATION FOR NATURAL LANGUAGE
PROCESSING APPLICATIONS

Despite significant progress in recent years, many NLP technologies are not
yet 100% reliable, in the sense that their output is often erroneous. Errors are
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due to the fact that language itself is typically ambiguous and because of tech-
nological and technical limitations. Examples are numerous: automatic speech
recognition applications (ASR) often return wrong utterances, machine trans-
lation (MT) applications frequently produce awkward or incorrect translations,
handwriting recognition applications are not flawless, etc.

We describe experiments in confidence estimation (CE), a generic machine
learning rescoring approach for estimating the probability of correctness of the
outputs of an arbitrary NLP application. In a general rescoring framework, a
baseline application generates a set of alternative output candidates that are
then rescored using additional information or models. The new score can then be
used as a confidence measure for rejection or for reranking. Reranking consists
in reordering the output candidates according to the new score: the top output
candidate will be the one that scores highest score as given by the rescoring
model. The goal of rejection is different: the new score (also called confidence
score) is not used to propose and alternative output but to be compared with
a rejection threshold. Outputs with a confidence score below the threshold are
considered insufficiently reliable and are rejected. Because of this fundamental
difference between reranking and rejection, rescoring techniques, models and
features for reranking and rescoring can differ.

Reranking was successfully applied on a number of different NLP problems,
including parsing [Collins and Koo 2005], machine translation [Och and Ney
2002; Shen et al. 2004], named entity extraction [Collins 2002] and speech
recognition [Collins et al. 2005; Hasegawa-Johnson et al. 2005].

Confidence measures and confidence estimation methods have been used ex-
tensively in ASR for rejection [Gillick et al. 1997; Hazen et al. 2002; Kemp and
Schaaf 1997; Maison and Gopinath 2001; Moreno et al. 2001]. Instead of focus-
ing on improving the output of the baseline system, these methods provide tools
for effective error detection and error handling. They have proven extremely
useful in making ASR applications usable in practice. Confidence measures
have been less frequently used in other areas of NLP, arguably because less
practical applications are available in these fields: rejection is useful when an
end application can determine the cost of a false output versus an incomplete
output and set a rejection threshold accordingly.

In Gandrabur and Foster [2003], if was first shown how the same methods
used in ASR for CE and rejection could be used in machine translation in the
context of TransType, an interactive text prediction application where the cost
of a wrong output could be estimated both in practice and by a theoretical user
model. In Blatz et al. [2004a], it was noted that CE is a generic approach that
could be applied to any technology with underlying accuracy flaws, but results
were presented only for machine translation.

Our article gives an overview of CE in general and is a first attempt to present
CE experiments in practical applications from different NLP fields, SMT and
ASR, under a unified framework.

In Sections 1–4, we set out a general framework for confidence estimation:
Section 1 motivates the use of this technique; Section 2 defines confidence mea-
sures; Section 3 describes confidence estimation and gives an overview of re-
lated work; and Section 4 discusses issues related to evaluation.
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In Section 5, we present a case study of the use of CE within an ASR applica-
tion. Section 6 describes how CE can be used for an interactive MT application.
We conclude in Sections 7 and 8 by enumerating the advantages and the limi-
tations of the use of CE in NLP.

1.1 Why are NLP Technologies Difficult?

At a fundamental level, NLP technologies are difficult because the underlying
tasks are hard to define precisely. Human judgment about what constitutes a
correct answer to a linguistic problem often encompasses many different al-
ternatives, and varies from one person to another. Thus, it can be argued that
a notion of confidence is intrinsic even to human language processing: some-
times there are only better or worse responses, and it is expedient to be able to
quantify this.

More concretely, there are many reasons why NLP performance is still well
below human levels in most areas. Viewed as a learning problem, language
is usually characterized by a sparse data condition, one that is exacerbated
by wide variations across domains. Statistical models are overly simplistic,
both in order to combat over fitting and because the true statistical structure
of language is unknown. Practical problems such as noisy inputs and search
errors can lead to further degradation of performance.

1.2 Workarounds to Accuracy Flaws

One response to NLP imperfections is to simply ignore them. Many current
NLP-based applications adopt this strategy, which calls for careful management
of user expectations. For instance, machine translation output is often billed
as being useful for gisting purposes—sufficient to allow a reader to infer the
general scope or meaning of the source text, but not to convey precise details.

Another solution, adopted widely in ASR but less so in other fields of NLP, is
the use of confidence measures. These are numerical scores assigned to individ-
ual outputs that reflect the system’s degree of confidence. Confidence measures
allow an application to take remedial action when it judges that an error may
have occurred. The canonical example in ASR is to prompt a user to repeat
a poorly recognized utterance. In a machine-translation post-editing applica-
tion, confidence measures can be used to identify questionable sentence-level
translations for human revision. In information retrieval, they can be used to
establish a relevance threshold, beyond which documents will not be shown
to the user. In general, confidence measures can make NLP applications more
natural and more useful.

In many cases, confidence measures can be derived directly from an NLP
system. For instance, the probabilistic scores that statistical systems assign to
their outputs can fulfill this role. However, the use of a separate confidence es-
timation component offers more flexibility, because it can easily be recalibrated
in response to changes in the operating domain or modifications to the base
NLP system. This is the approach to assessing confidence that we emphasize
in this article.

ACM Transactions on Speech and Language Processing, Vol. 3, No. 3, October 2006.



4 • S. Gandrabur et al.

2. CONFIDENCE MEASURES

Consider a generic application that for any given input x ∈ X of a fixed input
domain X returns a corresponding output value y ∈ Y of a fixed output domain
Y . Moreover, suppose that this application is based on an imperfect technology,
in the sense that the output values y can be correct or false (with respect to
some well-defined evaluation procedure). Formally, we can associate a binary
tag C ∈ {0, 1}, 0 for false and 1 for correct, to each output y , given its corre-
sponding input x. Practically all NLP applications can be cast in this mold, for
example:

—Automatic speech recognition (ASR) applications: x is a speech wave and y
is the corresponding sequence of words,

—Machine translation (MT): x is a sequence of words in a given source lan-
guage and y is the equivalent sequence of words in a different target
language,

—Automatic language identification (LI): x corresponds to text and y is the
language the text is written in,

—Information retrieval (IR): x is a query for information and y is a document
relevant to this query,

—Handwriting recognition: x is a hand-written text and y is the equivalent
typed text.

A confidence measure is a function c : X × Y × K → I , where: X and Y
are input and output domains as described above; K is an abstract domain
of additional knowledge sources used to determine the confidence; and I is
the confidence range. Typically, I is an interval [a, b] ∈ R such that a lower
confidence score is indicative of lower reliability. (Discretizing this interval into
specific ranges corresponding to different confidence levels—and ultimately to
different actions—is usually left to the end application.)

An important subclass of confidence measures consists of those for which
c(x, y , k) is intended to be an estimate of the probability P (C = 1|x, y , k) that
y is correct, where C ∈ {0, 1} is a binary correctness judgment for y . Such
probabilistic confidence measures can be used by the end application to choose
the action that minimizes risk in a decision-theoretic setting, provided that
the costs associated with different scenarios are known. Indeed, if costs de-
pend dynamically on x and y , risk cannot be minimized without a probabilistic
measure.

Alternative probabilistic confidence measures are posterior probabilities
P ( y |x), which can often be derived directly from statistical NLP systems. How-
ever, these are less general than correctness probabilities P (C|x, y) due to the
requirement that

∑
y P ( y |x) = 1, which forces the maximum probability of

correctness to depend on the number of correct answers y for a given input
x. For problems like machine translation that can have many equally correct
answers, correctness probabilities are preferable because they have a uniform
interpretation, independent of x.
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3. CONFIDENCE ESTIMATION

CE is a generic machine learning approach for computing confidence measures
for a given application. It consists in adding a layer on top of the base application
that analyzes the outputs in order to estimate their reliability or confidence. In
our work, the CE layer is a model for P (C|x, y , k), the correctness probability
for output y , given input x and additional information k.

Such a model could, in principle, be used to choose a different output from the
one chosen by the base system, but it is not typically used this way (otherwise,
the confidence layer could be incorporated to improve the base system). Rather,
its role is to predict the probability that best answer(s) output by the base
application will be correct. To do this, it may rely on information from k that is
irrelevant to the problem of choosing a correct output—for example, the length
of the source sentence in machine translation, which is often correlated with
the quality of the resulting translation.

3.1 Machine-Learning Approaches

The CE model is discriminatively trained over an annotated corpus that con-
sists of (x, y)-pairs, where x is from the application’s input domain and y is
the corresponding output produced by the application. To avoid overestimating
performance on new text, this corpus should be disjoint from any material orig-
inally used to train the application. Each pair in the corpus is annotated with
a label C ∈ {0, 1}; 1 if y is a correct output, 0 otherwise.

The pair (x, y) is represented as a vector of confidence features that captures
properties relevant for determining the correctness of the output. Examples of
confidence features are:

—the base-model probability estimate (in the case of statistical NLP applica-
tions);

—input-specific features (e.g., input sentence length, for a MT task);

—output-specific features (e.g., language-model score computed by an indepen-
dent language model over an output word sequence);

—features based on properties of the search space (e.g., size of a search graph);
and

—features based on output comparisons (e.g., average distance from the current
output to alternative hypotheses for the same input).

A detailed classification of types of confidence features is given in Blatz et al.
[2004b].

Some of these features—such as the base-model probability—can be used
as confidence measures in their own right. With a suitable training corpus
and machine learning method, we can expect that a CE layer incorporating
many features will perform better than any single feature on its own. Various
machine-learning methods can be used to combine features, including stack-
ing [Ting and Witten 1997], boosting [Schapire 2001], SVMs [Joachims 1998],
neural nets [Bishop 1995], and Maximum Entropy models [Foster 2000; Och
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and Ney 2002]. In this article, we use neural nets to learn combined confidence
measures.

3.2 Confidence Estimation with Neural Nets

Our models for confidence estimation are multi-layer perceptrons (MLPs) with
a LogSoftMax activation function, trained by gradient descent with a negative-
log-likelihood (NLL) criterion. Under these conditions, the outputs of the MLP
are guaranteed to be estimates of the conditional correctness probability p(C =
1|x, y , k) [Bishop 1995]. An advantage of MLPs is that the computer resources
required for training are modest (unlike SVMs, for example). The ability to train
efficiently is important for NLP applications, where the number of training
examples may be very large.

We describe experiments with two types of neural nets: MLPs, as described
above; and the special case of MLPs that have no hidden layer, which we refer to
as single-layer perceptrons (SLPs). This distinction is interesting because MLPs
can approximate an arbitrary decision boundary, whereas SLPs are limited to
linear decision boundaries. In the following paragraphs, we establish a link,
first presented in Gandrabur and Foster [2003], between SLPs and Maximum
Entropy models.

For the problem of estimating p( y |x) for a set of classes y over a space of
input vectors x, a single-layer neural net with softmax outputs takes the form:

p( y |x) = exp(�α y · x + b)/Z (x)

where �α y is a vector of weights for class y , b is a bias term, and Z (x) is a
normalization factor, the sum over all classes of the numerator. A maximum
entropy model is a generalization of this in which an arbitrary feature function
f y (x) is used to transform the input space as a function of y :

p( y |x) = exp(�α · f y (x))/Z (x).

Both models are trained using maximum likelihood methods. Given M classes,
the maximum entropy model can simulate a SLP by dividing its weight vector
into M blocks, each the size of x, then using f y (x) to pick out the yth block:

f y (x) = (01, . . . , 0 y−1, x, 0 y+1, . . . , 0M , 1),

where each 0i is a vector of 0’s and the final 1 yields a bias term.
The advantage of maximum-entropy models is that their features can depend

on the target class. For natural-language applications where target classes cor-
respond to words, this produces an economical and powerful representation.
However, for CE, where the output is binary (correct or incorrect), this capacity
is less interesting. In fact, there is no a priori reason to use a different set of
features for correct outputs or incorrect ones, so the natural form of a maxent
model for this problem is identical to a SLP (modulo a bias term). Therefore, our
experiments can be seen as comparisons between maxent models and neural
nets with a hidden layer.
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3.3 Related Work

The most extensive application of CE in NLP is within the field of ASR, where
confidence measures are typically used to determine whether or not to ask
a user to repeat an utterance, as described below in Section 5. In ASR, ap-
proaches based on a separate CE layer tend to predominate, although there
is also work on posterior probability confidence measures derived from nbest
lists or word lattices [Mangu et al. 2000; Wessel et al. 2001]. Many differ-
ent machine-learning algorithms have been used for training CE layers, in-
cluding Adaboost [Carpenter et al. 2001], naive Bayes [Sanchis et al. 2003],
Bayesian nets [Moreno et al. 2001], neural networks [Guillevic et al. 2002;
Kemp and Schaaf 1997; Weintraub et al. 1997; Zhang and Rudnicky 2001],
boosting [Moreno et al. 2001], support vector machines [Ma et al. 2001; Zhang
and Rudnicky 2001], linear models [Gillick et al. 1997; Kemp and Schaaf 1997;
Moreno et al. 2001], and decision trees [Kemp and Schaaf 1997; Moreno et al.
2001; Neti et al. 1997; Zhang and Rudnicky 2001]. Roughly half of this work
concerns CE for probabilistic confidence measures, and half concerns nonprob-
abilistic measures (i.e., scores derived from binary classifiers). The standard
methods for evaluating CE performance, discussed in the next section, have
also emerged from work in ASR, for example, Siu and Gish [1999] and Maison
and Gopinath [2001].

There is a more recent, but growing, body of work on CE for machine transla-
tion and related fields. In Gandrabur and Foster [2003], a neural-net CE layer
is used to improve estimates of correctness probabilities for text predictions in
a machine-assisted translation tool. Blatz et al. [2004a] report on an extensive
study to investigate word- and sentence-level CE on MT output, using Naive
Bayes and neural net classifiers; a major conclusion is that noise in automatic
MT evaluation metrics makes it difficult to determine correctness at the sen-
tence level. Quirk [2004] suggests the use of human assessments to get around
this problem, and finds that training on a small set of human annotated data
leads to better performance, when evaluated on similar data, than does train-
ing on a much larger automatically annotated corpus. Finally, Ueffing and Ney
[2005] improve on the word-level CE techniques of Blatz et al. [2004a] by us-
ing a general phrase-based translation model, independent from the base MT
system, and by optimizing log-linear parameters in the CE layer to improve
confidence error rate directly.

CE has also been used in other areas of NLP. Manmatha and Sever [2002]
describe a form of confidence estimation for combining the results of different
query engines in information retrieval. Delany et al. [2005] describe an ad hoc
ensemble-based approach to combining confidence features in a spam-filtering
application. Xu et al. [2002] use a mixture of empirical correctness probabili-
ties for single features (such as answer type) to select a response from either a
web-based or a traditional question answering system. Culotta and McCallum
[2004] study the problem of confidence estimation in an information extraction
system based on linear-chain conditional random fields. They find that poste-
rior probabilities derived using the forward-backward algorithm from the base
system’s model outperform related ad hoc methods, and give about the same
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performance as an external maximum-entropy CE layer that uses the posterior
estimates as features. Another important use of CE is in active learning, where
correctness probabilities can be used to select informative examples for human
annotation Culotta and McCallum [2005]. Finally, CE has applications outside
of NLP, for instance in CPU branch prediction for instruction-level parallelism
[Grunwald et al. 1998].

4. EVALUATION

In this section, we discuss two aspects of evaluation that are pertinent to CE:
evaluation of correctness of the base application outputs and evaluation of the
accuracy and usefulness of confidence measures.

4.1 Evaluation of Correctness

As described above, the approach to CE that we promote in this article re-
quires examples of system input and output labelled with binary correctness
judgments. These are used for both training and evaluation purposes.

Producing such data requires extensive human effort and is subject to typical
problems such as noisy input and inter-annotator disagreement. Nevertheless,
it is relatively straightforward for problems such as speech recognition and text
classification for which there is at least nominally one right answer. In such
cases, standard data sets labeled with the correct answer can be established,
and the correctness status for a given system’s output over these data sets can
be determined automatically.

The situation is more complicated for problems like machine translation
and automatic summarization for which the answers are multiple and less
clearly defined. Here the best approach would be to have humans evaluate all
system outputs, but this is often too expensive, as it needs to be done separately
for different systems and even for different versions of the same system. An
alternative is to establish standard data sets containing a set of correct answers
for each input, from which the status of a system output can be calculated
using some distance measure such as the well-known BLEU metric in machine
translation [Papineni et al. 2001]. Binary correctness judgments can then be
derived by thresholding this distance measure.

4.2 Evaluation of Confidence Measures

Since the motivation for using confidence measures is to improve an applica-
tion, the ultimate gauge of their success is the gain in end-to-end performance.
However, it is also useful to have metrics that allow for more direct evaluation
of confidence measures. We use two such metrics:

—Receiver Operating Characteristic (ROC) curves, and related quantitative
metrics for assessing discriminability [Zou 2004]; and

—Normalized Cross Entropy (NCE) for measuring the relative decrease in un-
certainty about the correctness of the application outputs produced by the
confidence measure [NIST 2001].
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ROC curves apply to any confidence score (probabilistic or not), and are valuable
for comparing discriminability and determining optimal rejection thresholds
for specific application settings. NCE applies only to probabilistic measures,
and tests the accuracy of their probability estimates; it is possible for such
measures to have good discriminability and poor probability estimates, but not
the converse. In the following sections, we briefly describe each metric.

4.2.1 ROC Curves. Any confidence measure c(x, y , k) can be turned into
a binary classifier by choosing a threshold θ and judging the system output
y to be correct whenever c(x, y , k) ≥ θ . Over a given dataset consisting of
pairs (x, y) labelled for correctness as defined in Section 3.1, the performance
of the classifier can be measured using standard statistics like accuracy. The
statistics used for ROC are correct acceptance (CA) and correct rejection (CR): the
proportion of pairs scoring above θ that are in fact correct, and the proportion
scoring below θ that are incorrect.

In general, different values of θ will be optimal for different applications. An
ROC curve summarizes the global performance of c(x, y , k) by plotting CR(θ )
versus CA(θ ) as θ varies. An advantage of using CA and CR for this purpose is
they range from 0 to 1 and 1 to 0, respectively, as θ ranges from the smallest
value of c(x, y , k) in the dataset to the largest. This means that ROC curves al-
ways connect the points (1,0) and (0,1) and thus are easy to compare visually (in
contrast to other plots such as recall versus precision). Better curves are those
that run closer to the top right corner, and the best possible connects (1,0), (1,1),
and (0,1) with straight lines. This corresponds to perfect discriminability, with
all correct points (x, y) assigned higher scores than incorrect points. Curves
“below” the diagonal are equivalent to those above, with the sign of c(x, y , k)
reversed.

A quantitative metric related to ROC curves is IROC, the integral below
the curve, which ranges from 0.5 for random performance to 1.0 for perfect
performance. This metric is similar to the Wilcoxon rank sum statistic [Blatz
et al. 2004b]. Alternatively, one can choose a fixed operating point for CA (for
instance, 0.80), and compare the corresponding CR values given by difference
confidence measures.

4.2.2 Normalized Cross Entropy. NIST introduced the Normalized Cross
Entropy (NCE) measure as the cross entropy (mutual information in this con-
text) between the correctness of the system’s output y and its probabilistic
confidence score, normalized by a baseline cross entropy:[

Hbase +
∑

correct y

log2 P (C = 1|x, y) +
∑

incorrect y

log2 P (C = 0|x, y)

]
/Hbase,

where Hbase = n log2 pc + (N − n) log2(1 − pc), pc is the prior probability of
correctness, and n is the number of correct outputs out of N total outputs.

The idea of NCE is to allow for comparison of confidence measures across
different test sets by correcting for the effect of prior probabilities, which tend
to boost raw cross-entropy scores when they are high. The term Hbase is propor-
tional to the maximum cross entropy obtainable by assigning a fixed probability
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of correctness to all examples when the prior is pc. NCE scores normally range
from 0 when performance is at this baseline to 1 for perfect probability esti-
mates, although negative scores are also possible.

5. CONFIDENCE ESTIMATION FOR AUTOMATIC SPEECH RECOGNITION

This section describes the use of CE within an ASR application, first presented
in Guillevic et al. [2002], where a human user interacts by speaking with a
system, in our case a directory assistant application.

The user says an utterance, either a phrase or a short command, and the ASR
application interprets the utterance into a sequence of words, called recognition
hypothesis. Then, a Spoken Language Understanding (SLU) module extracts
meaning from the recognition hypothesis by interpreting it into a sequence of
concepts or semantic slots.

The example below illustrates the interaction between a human user and an
ASR directory application. A user wanting to reach a certain “McPhearson” on
the telephone, utters the desired name when prompted by the application. The
ASR engine returns three alternative recognition hypotheses as a N-best set:

1 McPhearson
2 Paul McPhearson
3 Mike Larson

A robust parser transforms each recognition hypothesis into one or more
semantic hypotheses or semantic interpretations, that is, a sequence of concepts:

1 (userID=103, LastName=McPhearson)
2 (userID=103, FullName=Paul McPhearson)
2 (userID=103, LastName=McPhearson)
3 (userID=217, FullName=Mike Larson)
3 (userID=217, LastName=Larson)
3 (userID=315, LastName=Larson)

A concept is a key-value pair; in our example, the keys are userID, LastName
and FullName. For instance, the second recognition hypothesis “Paul McPhear-
son” has two different semantic interpretations: both corresponding to the same
destination (userID=103), one corresponding to a full parse (FullName=Paul
McPhearson) and the other only a partial parse that leaves out the first name
“Paul” (LastName=McPhearson).

A dialog manager then decides that the confidence level of the destination
concept userID=103 is sufficiently high to transfer the call this destination.

This application relies on concept-level confidence scores for designing its
dialog strategies. For instance, if the confidence level of a destination is too
low, the application might decide to prompt the user for a confirmation, such
as “Would you like to talk to Paul McPhearson?”. Alternatively, if all confidence
levels of semantic interpretations are too low, the application might decide to
reject the entire utterance and prompt for a repetition, such as: “Sorry, I did
not understand. Could you please repeat your request?”.

Typical confidence measures for ASR applications first determine the reli-
ability of the ASR results at the word level and then at the utterance level
[Wessel et al. 2001; Stolcke et al. 1997; Sanchis et al. 2003; Carpenter et al.
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2001; Hazen et al. 2000; Moreno et al. 2001; Zhang and Rudnicky 2001]. How-
ever, in speech understanding systems, recognition confidence must be reflected
at the semantic level in order to be able to apply various confirmation strate-
gies directly at the concept level. In the previous example, the application is
not concerned about how well the word “Paul” was recognized when deciding
to transfer the call to Paul McPhearson. It only needs to take into account how
confident the destination userID=103 is.

Concept-level confidence scores can be obtained by computing word and ut-
terance confidence scores and feeding them to the natural language processing
unit in order to influence its parsing strategy [Hazen et al. 2000]. This approach
is mostly justified when semantic interpretation tends to be a time-consuming
processing task: the time to complete a robust parsing over a large N-best list (or
equivalent word-lattice) is reduced by only focusing on areas of the word-lattice
where recognition confidence is high.

Alternatively, a confidence score can be computed directly at the concept level
[San-Secundo et al. 2001]. This method has the advantage of being more com-
plete: it enables taking parsing-specific and semantic consensus information
into account when computing the concept-level confidence score.

In the following experiments, we first compute a confidence score at the
word level, based mainly on acoustic features computed over N-best lists (or
the equivalent word-lattices). Second, we parse the utterances and use the
word-level confidence score (among other features) to compute a concept-level
confidence score.

Confidence scores are computed using the CE approach: we train MLPs to
estimate the probability of correctness of recognition results on two levels of
granularity: word-level and concept-level. The training is supervised, based on
an annotated corpus consisting of various utterances and their corresponding
recognition and semantic hypotheses, annotated as correct or wrong at word-
level, respectively concept-level.

We use the same corpus for both CE tasks, consisting of 40,000 utterances.
We split our corpus into three sets: 49/64 of the data for training, 7/64 for
validation and the remaining 8/64 for testing.

5.1 Word-Level CE for ASR

For each utterance in the corpus, we generate ASR results as sets of N-best
recognition hypotheses with N = 5.

A per-word timing information is available, that indicates the precise start
and end frame of the speech signal (the minimal unit the signal is divided into)
that each word corresponds to. This timing information allows us to recover the
word-lattice structure from the N-best lists.

Each word in a recognition hypothesis constitutes a training/testing example
for the word-level CE task: a number confidence features and a correct/wrong
tag are computed for each word.

A word is tagged as correct if it can be found in roughly the same position
in the utterance’s reference transcription and incorrect otherwise. This step is
performed by aligning the hypothesis and the reference word sequences using a

ACM Transactions on Speech and Language Processing, Vol. 3, No. 3, October 2006.



12 • S. Gandrabur et al.

Table I. Correct Rejection (CR) Rate for an

Acoustic Word Score Classifier Using a MLP

Network with Two Nodes in the Hidden Layer

with a Correct Acceptation Rate of 95%

Score NCE CR

Frame-weighted acoustic score 0.25 34%

CE word score 0.32 47%

dynamic programming algorithm with equal cost for insertions, deletions, and
substitutions. As a result, each hypothesized word is tagged as either: insertion,
substitution, or ok, with the ok words tagged as correct, while the others are
tagged as incorrect. Note that the comparison between two words is based on
pronunciation, not orthography.

We use four different word-level confidence features:

Frame-Weighted Raw Score. This corresponds to the log-likelihood that the
recognized word is correct given the speech signal that it was aligned to, as
estimated by the probabilistic acoustic models used within the ASR applica-
tion. This score is computed by averaging the acoustic score (the log-likelihood
estimated by the acoustic models used in the ASR system that the recognized
word-segment is correct given the speech signal) over all frames in a word.

Frame-Weighted Acoustic Score. This is the frame-weighted raw score nor-
malized by an on-line garbage model [Caminero et al. 1996]. It is the base word
score originally used by the underlying ASR application;

State-Weighted Acoustic Score. This score is similar with the frame weighted
acoustic score. The difference is that the score is averaged not over frames but
over Hidden Markov Model (HMM) states corresponding to the word;

Word Length. The number of frames of each word.

Given the four word-level features mentioned above, plus the correct tag, we
train a MLP network with two nodes in the hidden layer and a LogSoftMax ac-
tivation function, using gradient descent with a negative-log-likelihood (NLL)
criterion. In choosing the MLP architecture (the number of hidden units and
layers) we are making a trade-off between: classification accuracy and robust-
ness: more complex architectures (with more hidden units and/or and additional
layer) seemed to over fit the data, even when early training stopping was per-
formed, and were more sensitive to small changes in the training corpus. The
MLP was trained to estimate the probability of a word being correct, according
to its confidence features. Prior to being fed to the network, the features are
scaled by removing the mean and projecting the feature vectors on the eigenvec-
tors computed on the pooled-within-class covariance matrix. The pooled matrix
is the one used in Fisher’s Linear Discriminant Analysis.

As shown in Table I, at a correct acceptance (CA) rate of 95%, we are able
to boost our correct rejection (CR) rate from 34% to 47%. This represents a
38% relative increase in our ability to reject incorrect words. We also measured
the relative performance of our new word score using the Normalized Cross
Entropy (NCE) introduced by NIST. We are able to boost the entropy from 0.25
to 0.32.
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This means that the new word-level confidence score is more discriminative
than the original per-word acoustic score provided by the ASR engine. This
improvement leads to better discriminability at the concept level, as will be
described in the following section.

5.2 Concept-Level CE for SLU

Using the same experimental set-up as in the preceding section on word-level
CE for ASR, we applied the CE approach for SLU, namely at the concept (se-
mantic slot) level.

The start and end times of a semantic slot are respectively defined as the
start time of the first word and the end time of the last word that make up
the slot. This timing information allows us to obtain a concept-level lattice
corresponding to each recognition hypothesis N-best list produced by the ASR
engine.

Prior to describing the concept-level confidence features, we define the notion
of normalized hypothesis a posteriori probabilities used in the definition of our
confidence features.

5.2.1 Normalized Hypothesis a Posteriori Probabilities. The recognition
hypotheses (sometimes also referred to as sentences) within an N-best set are
ordered according to their sentence score, that is the log-likelihood of the joint
probability of the acoustic scores and the language model probabilities of the
word sequence: the higher the sentence score, the higher the estimated proba-
bility of correctness of the hypothesis and the higher its rank within the N-best
set.

The sentence score is very appropriate for ranking hypotheses, but does not
not give an indicative absolute confidence measure because it is greatly affected
by the sentence length: it is a point probability computed by multiplying the
individual word acoustic and language scores. Therefore, longer sentences do
not necessarily mean lower probability of correctness. We define the normalized
hypothesis score as the posterior probability to obtain a measure that is more
robust to sentence length.

Given a set of N-best recognition hypotheses Hi with their corresponding
sentence scores Si, we compute the normalized hypothesis a posteriori proba-
bilities p̂i according to the following formula:

pi = exp [k�i] , and p̂i = pi/

N∑
j=0

pj .

where the constant k has been set experimentally to 0.075 in our applications,
and �i = Si − S0:

In Table II, we illustrate the computation of a posteriori hypothesis probabil-
ities p̂i on an example of three recognition hypotheses and their corresponding
sentence scores Si.

In the following sections, we will first describe our concept-level confidence
features, then the labeling method for these concepts and finally our experi-
mental results.
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Table II. Computation of a Posteriori Hypothesis Probabilities on Three Recognition

Hypotheses and the Corresponding Sentence Scores

Rank Sentence Si �i k�i pi p̂i

1 McPhearson −5610.114 0.0 0.0 1.0 0.9033

2 Paul McPhearson −5647.917 −37.803 −2.835 0.0587 0.0530

3 Mike Larson −5650.505 −40.391 −3.029 0.0483 0.0436

5.2.2 Confidence Features. For each semantic slot, we consider six confi-
dence features:

—word confidence score average;

—word confidence score standard deviation;

—semantic consensus;

—time consistency;

— fraction of unparsed words per hypothesis;

— fraction of unparsed frames per hypothesis.

The last two confidence features are computed for an entire semantic hypoth-
esis. Semantic consensus and time consistency are similar to slot a posteriori
probabilities. Mangu et al. [2000] and Wessel et al. [2001] use a similar scheme
to compute word posteriors and consensus-based confidence features.

Word Confidence Score Average and Standard Deviation are computed over
all words in a slot.

Semantic Consensus is a measure of how well a semantic slot is represented
in the N-best ASR hypotheses. For each semantic slot value, we sum the nor-
malized hypothesis a posteriori probabilities of all hypotheses containing that
slot. The measure does not take into account the position of the slot within the
hypothesis.

Time Consistency is related to the semantic consensus described above. For
a given slot, we add the normalized a posteriori probabilities of all hypotheses
where the slot is present and where the start/end times match. The start and
end frames for each hypothesized word are given by the ASR and then trans-
lated into a normalized time scale. The start and end times of a semantic slot
are then respectively defined as the start time of the first word and the end
time of the last word that make up the slot.

Fraction of Unparsed Words and Frames indicates how many of the hypoth-
esized words are left unused when generating a given slot value. The classifier
will learn that a full parse is often correlated with a correct interpretation, and
a partial parse with a false interpretation. The measure of unparsed frames is
similar to the measure of unparsed words, with the difference that the words
are weighted by their length in number of frames.

5.2.3 Tag—Classifier. We tag each semantic slot as either “correct” or “in-
correct”. A semantic slot is “correct” if it appears in the list of slots associated
with the reference, regardless of its position.

We feed the six measures mentioned above into an MLP with five hidden
neurons. The features are pre-processed before being fed to the network by
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Table III. CA/CR Rates Obtained with Semantic Slot Classifiers Trained on

Various Subsets of Confidence Featuresa

CR

Features NCE CA = 90% CA = 95% CA = 99%

base-line: AC-av 0.32 59% 36% 6%

CE-av, CE-sd 0.35 64% 46% 15%

SC 0.48 81% 66% 21%

AC-av, CE-av/sd, SC, TC 0.55 86% 70% 21%

all 0.56 87% 71% 27%

aThe first column gives the features used in each case with the following abbreviations:

AC-av = word acoustic score average, CE-av = word confidence score average, CE-sd =
word confidence score standard deviation, SC = semantic consensus, TC = time consis-

tency FUW = fraction of unparsed words, FUF = fraction of unparsed frames. The second

column gives the normalized cross-entropy (NCE). The last three columns give the correct

rejection rates at a given correct acceptance rate (CA).

Table IV. Impact of Normalized a Posteriori Hypothesis

Weights (hypAPostProb) on CA/CR Rates. SC =
semantic consensus, TC = time consistency

CR

Features NCE CA = 90%

SC, TC without hypAPostProb 0.39 68%

SC, TC with hypAPostProb 0.48 81%

removing the mean and projecting the feature vector on the eigenvectors of the
pooled-within-class covariance matrix.

5.2.4 Results. We train different MLPs using various subsets of features.
We measure the performance of the resulting semantic slot classifiers by ana-
lyzing the correct rejection (CR) ability at various correct acceptance (CA) rates
given in Table III.

We see that, by feeding our six measures into a MLP, we enhance the perfor-
mance of a baseline that uses only the average of the original frame-weighted
acoustic word scores. The entropy jumps from 0.32 to 0.56 and the CR rate goes
from 36% to 71% for a CA rate of 95%.

In the computation of the semantic consensus and time consistency measures,
the occurrence rates of slots in the N-best set are weighted by the normalized
hypothesis a posteriori probabilities. In order to measure the impact of these
weights, we build classifiers based on these features computed with and with-
out the weights, assuming equal probabilities for all hypotheses. Results are
presented in Table IV and show an important impact of the weights on the
discriminability of the classifiers.

We have shown how a generic machine learning approach to CE can improve
the usefulness of an ASR application. The CE layer produces a combined confi-
dence score that estimates the probability of correctness of an output. This score
could be used to discriminate effectively between correct and wrong outputs. We
now show how the same approach can be applied to a Machine Translation task.

6. CONFIDENCE ESTIMATION FOR MACHINE TRANSLATION

Confidence measures have been introduced in Statistical Machine Translation
(SMT) [Gandrabur and Foster 2003] in the context of TransType, an interactive
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Fig. 1. Screen shot of a TransType prototype. Source text is on the left half of the screen, whereas

target text is typed on the right. The current proposal appears in the target text at the cursor

position.

text prediction application, then by [Ueffing et al. 2003]. CE for SMT was the
subject of a JHU CLSP summer workshop in 2003 [Blatz et al. 2004a, 2004b].

The application we are concerned with is an interactive text prediction tool
for translators, called TransType1 [Foster et al. 1997; Langlais et al. 2004].

The system observes a translator as he or she types a text and periodically
proposes extensions to it, which the translator may accept as is, modify, or
ignore simply by continuing to type. With each new keystroke the translator
enters, TransType recalculates its predictions and attemps to propose e new
completion to the current target text segment. Figure 1 shows a TransType
screen during a translating session.

There are several ways in which such a system can be expected to help a
translator:

—when the translator has a particular text in mind, the system’s proposals can
speed up the process of typing it

—when the translator is searching for an adequate formulation, the proposals
can serve as suggestions

—when the translator makes a mistake, the system can provide a warning,

1More information about the project and an interactive demonstration is available at

http://rali.iro.umontreal.ca/Traduction/TransType.en.html.
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either implicitly by failing to complete the mistake or explicitly by attaching
an annotation for later review,

The novelty of this project lies in the mode of interaction between the user
and the machine translation (MT) technology on which the system is based.
In previous attempts at interactive MT, the user has had to help the system
analyze the source text in order to improve the quality of the resulting machine
translation. While this is useful in some situations (e.g., when the user has
little knowledge of the target language), it has not been widely accepted by
translators, in part because it requires capabilities (in formal linguistics) that
are not necessarily those of a translator. Using the target text as the medium
of interaction results in a tool that is more natural and useful for translators.

This idea poses a number of technical challenges. First, unlike standard MT,
the system must take into account not only the source text but that part of
the target text which the user has already keyed in. This section will mainly
explore how the tool can limit its proposals to those in which it has reasonable
confidence but we have also explored how it should adapt its behavior to the
current context, based on what it has learned from the translator [Nepveu et al.
2004].

If the system’s suggestions are right, then reading them and accepting them
should be faster than performing the translation manually. However, if pre-
diction suggestions are wrong, the user loses valuable time reading through
wrong predictions before disregarding them. Therefore, the system must ide-
ally find an optimal balance between presenting the user with predictions or
“acknowledging its ignorance” and not propose unreliable predictions. Further
complications arise from the fact that longer predictions are typically less re-
liable. On the other hand, a long correct prediction saves more typing time if
accepted, just as a long wrong prediction is longer to read and therefore wastes
more user-time. For this reason, we adopted a flexible prediction length. Sugges-
tions may range in length from 0 characters to the end of the target sentence;
it is up to the system to decide how much text to predict in a given context,
balancing the greater potential benefit of longer predictions against a greater
likelihood of being wrong, and a higher cost to the user (in terms of distraction
and editing) if they are wrong or only partially right.

An avant-garde tool like this one has to be tested and its impact evaluated in
authentic working conditions, with human translators attempting to use it on
realistic translation tasks. We have conducted user evaluations and collected for
assessing the strengths and weaknesses both of the system and the evaluation
process itself. Part of this data was used for comparing different combinations
of parameters in the following experimentations.

In the project’s final evaluation rounds [Macklovitch 2006], most of the trans-
lators participating in the trials registered impressive productivity gains, in-
creasing their productivity from 30 to 55% thanks to the completions provided
by the system. The trials also served to highlight certain modifications that
would have to be implemented if the TransType prototype is to be made into a
translator’s every day tool: e.g. the ability of the system to learn form the users’
corrections, in order to modify its underlying translation models.
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6.1 CE for TransType

Our CE approach for TransType consists in training neural nets to estimate
the conditional probability of correctness

p(C = 1|ŵm, h, s, {w1
m, . . . , wn

m})
where ŵm = w1

m is the most probable prediction of length m from a N-best set
of alternative predictions according to the base model.

In our experiments, the prediction length m varies between 1 and 4 and n is
at most 5. As the N-best predictions {w1

m, . . . , wn
m} are themselves a function

of the context, we will note the conditional probability of correctness by p(C =
1|ŵm, h, s).

The data used in our experiments originates from a Hansard English-French
bi-text corpus. In order to generate the train and test sets, we use 1.3 million
(900 000 for training and 400 000 for testing purposes) translation predictions
for each fixed prediction length of one, two, three and four words, summing
to a total of 5.2 million prediction examples characterized by their confidence
feature vector.

Each translation prediction of the test and training corpus is automatically
tagged as correct or incorrect. A translation prediction wm is tagged as correct
if an identical word sequence is found in the reference translation, properly
aligned. This is a very crude and severe tagging method. It could be relaxed by
using multiple reference translations and more sophisticated ways of determin-
ing whether two translations are equivalent, rather than requiring identity.

For each original translation model, we experimented with two different CE
model architectures: MLPs with one hidden layer containing 20 hidden units
and one with 0 hidden units, also referred to as single layer perceptron (SLP).

Moreover, for each native model, CE model architecture pair, we train five
separate CE models: one for each fixed prediction length of one, two, three or
four words, and an additional model for variable prediction lengths of up to four
words.

Training and testing of the neural nets was done using the open-source
machine-learning library Torch [Collobert et al. 2002].

6.1.1 Confidence Features. The features can be divided into three families
(Table V):

—F1 capture the intrinsic difficulty of the source sentence s;

—F2 reflect how hard s is to translate in general;

—F3 reflect how hard s is for the current model to translate.

For the first two families, we used two sets of values: static ones that depend
on s and dynamic ones that depend on only those words in s that are still
untranslated, as determined by an IBM2 word alignment between s and h.
The features are listed in Table V. The average number of translations per
source word were computed according to an independent IBM1 model (features
9,14). Features 13 and 18 are the density of linked source words within the
aligned region of the source sentence.

ACM Transactions on Speech and Language Processing, Vol. 3, No. 3, October 2006.



Confidence Estimation for NLP Applications • 19

Table V. Confidence Featuresa

IROC

Family Feature Maxent1 Bayes

0 static trigram perplexity 0.3879 0.4156

1 static min trigram word probability 0.5567 0.5623

2 static av. word frequency 0.5680 0.5593

3 static av. word length 0.4734 0.4774

4 F1 dynamic trigram perplexity 0.3868 0.4178

5 dynamic min trigram word probability 0.5673 0.5965

6 dynamic av. word frequency 0.5879 0.5263

7 dynamic av. word length 0.4659 0.4500

8 nb. of words 0.4873 0.4312

9 static av. nb. of transl. per source word 0.4644 0.4841

10 static av. source word entropy 0.4460 0.4536

11 static nb. of token to be translated 0.4873 0.4312

12 static nb. o unknown words 0.5011 0.5008

13 static source words density 0.5725 0.5352

14 F2 dynamic av. nb. of transl. per source word 0.5148 0.5511

15 dynamic av. source word entropy 0.4875 0.4774

16 dynamic nb. of source token to be translated 0.5041 0.3538

17 dynamic nb. of unknown words 0.4948 0.4929

18 dynamic source words density 0.3987 0.4403

19 length of current target prefix 0.4503 0.5635

20 prediction length 0.2776 0.2181

21 av. nb. of pruned search hypotheses 0.5608 0.5293

22 search lattice size 0.2931 0.2772

23 F3 active vocabulary size 0.4630 0.4292

24 number of N-best hypothesis 0.3791 0.3230

25 index of current hypothesis 0.5000 0.5000

26 posterior hypothesis probability 0.8070 0.7799

27 base model probability 0.8595 0.8019

aDescription and discriminability for predictions of m = 1, . . . , 4 words. The second column describes

the families of features : F1 features capture the intrinsic difficulty of the source sentence; F2

features reflect how hard s is to translate; F3 features reflect how hard s is for the current model to

translate. The last two columns are the IROC values obtained with each feature.

6.2 Experimental Results

We performed experiments to test the discriminability of scores (Sections 6.2.1 –
6.2.3). To compare the discrimination capacity of scoring functions, we use ROC
curves and the integral of the ROC curve, or IROC introduced in Section 4.2.1.
We also compare scoring functions by fixing an operational point at CA = 0.80
and observing the corresponding CR values.

To establish usability improvements in terms of timing speed due to the use of
the CE layer we use a user-model simulation [Foster et al. 2002] (Section 6.2.4).

Finally, we will test the usefulness of the CE layer in a different setting:
for combining translation prediction outputs from separate independent
translation models through a simple maximum confidence score voting scheme
(Section 6.2.5).

6.2.1 Discriminability: CE versus and Native SMT Probabilities. In our
setting, the tokens are the ŵm translation predictions and the base-model score
function is the conditional probability p(C = 1|ŵm, h, s).
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Table VI. Bayes model, number of words m = 1, . . . , 4 :ROC Curve and comparison of

discrimination capacity between the Bayes prediction model probability and the CE of the

corresponding SLP and MLP on predictions of up to four words

The first question we wish to address is whether we can improve the cor-
rect/false discrimination capacity by using the probability of correctness esti-
mated by the CE model instead of the native probabilities.

For each SMT model, we compare the ROC plots, IROC and CA/CR values
obtained by the native probability and the estimated probability of correctness
output by the corresponding SLPs (also noted as mlp-0-hu) and the 20 hidden
units MLPs on the one-to-four words prediction task.

Results obtained for various length predictions of up to four words using the
Bayes models are summarized in Table VI. At a fixed CA of 0.80, we obtain
the CR increases from 0.6604 for the native probability to 0.7211 for the SLP
and 0.7728 for the MLP. The overall gain can be measured by the relative
improvements in IROC obtained by the SLP and MLP models over the native
probability, that are respectively 17.06% and 33.31%.

The improvements obtained in the fixed-length four-words-prediction tasks
with the Bayes model, shown in Table VII, are even more important: the relative
improvements on IROC are 32.36% for the SLP and 50.07% for MLP.

However, the results obtained in the Maxent models are not so good, arguably
because the Maxent models are already discriminantly trained. The SLP CR
actually drops slightly, indicating that linear separation was too simplistic and
that additional features only added noise to the already discriminant Maxent
score. The MLP CR increases slightly to a 4.80% relative improvement in the CR
rate for the Maxent1 model and only 3.9% for the Maxent2 model (Table VIII).
The results obtained with the two Maxent models being similar, we only give
the ROC curve for the Maxent2 model.

It is interesting to note that the native model prediction accuracy did not af-
fect the discrimination capacity of the corresponding probability of correctness
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Table VII. Bayes model, number of words m = 4: ROC curve and comparison of discrimination

capacity between the Bayes prediction model probability and the CE of the corresponding SLP

and MLP on fixed-length predictions of four words

of the CE models, see Table IX. Even though the Bayes model accuracy and
IROC is much lower than the Maxent model’s, the CE IROC values are almost
identical.

6.2.2 Relevance of the Confidence Features. We investigate the relevance
of the different confidence features for correct/incorrect discrimination and how
they vary when we change the underlying SMT models.

We computed the IROC values obtained by the individual confidence features
in the one-to-four words prediction task using the Maxent1 and the Bayes mod-
els and present them in Table V.

The group of features that performs best over both models are the model-
and search-dependent features (21, . . . , 27), followed by the features which
capture the intrinsic difficulty of the source sentence and the target-prefix
(0, . . . , 8, 20), and the least relevant ones are the remaining features related
to the translation difficulty.

The most relevant feature is the native probability (27), followed by the
posterior hypothesis probability (26) and the prediction length (20).

However, there are several interesting differences between the two models,
mostly related to the length of the translations (16, 19, 20): the Bayes models
seem to be much more sensitive to long translations than the Maxent models.

6.2.3 Dealing with Predictions of Various Lengths. We try different ap-
proaches for dealing with various length predictions: we train four separate
MLPs for fixed length predictions of one, respectively, two, three, or four words.
Then, we train a unique MLP over predictions with various lengths, ranging
from one to four, and compared the results in Table X
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Table VIII. Comparison of Discrimination Capacity between

the Maxent1 and Maxent2 Prediction Models Probability and

the CE of the Corresponding SLP and MLP on Predictions of

up to Four Words

Maxent1 Maxent2

Model IROC CR IROC CR

native probability 0.8581 0.7467 0.8595 0.7479

SLP 0.8401 0.7142 0.8352 0.6973

MLP 0.8636 0.7561 0.8638 0.7599

Table IX. Discrimination vs. Prediction Accuracy:

Number of Words m = 1, . . . , 4

SMT IROC Native

Model %C=1 Probability IROC MLP

Bayes 8.77 0.8019 0.8679

Maxent1 21.65 0.8581 0.8636

Maxent2 22.23 0.8595 0.8638

The best discriminability was obtained by the MLP trained on predictions
of various lengths and in all cases the CE-score discriminability is at least as
good as the base score (the native probability estimated by the base models).

6.2.4 User-Model Evaluations. Evaluations with the user simulation are
performed only with the Maxent1 and Maxent2 models. The results on a single
Hansard file containing 1272 sentence pairs are shown in the Table XI. All are
generated using the mixed length (1–4 word predictions) neural nets.

According to our experiments, the best performing systems are the ones us-
ing the MLPs with 20 hidden units. These systems outperformed the base-
line system that used the base model probabilities during the simulation for
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Table X. Model = Maxent2, nb. of Words as

m = 1, m = 2, m = 3, m = 4, m = 1, . . . , 4: ROC Curve and

Impact of Prediction Length on Discrimination Capacity and

Accuracy for the Maxent2 Prediction Model

Discrimination vs. prediction length: Maxent2

Prediction IROC native IROC CE

length m %C = 1 probability MLP

m = 1 44.78 0.7926 0.7986

m = 2 23.30 0.8074 0.8121

m = 3 13.12 0.8261 0.8245

m = 4 7.74 0.8517 0.8567

m = 1, ..., 4 22.23 0.8595 0.8638

typing-speed benefit computations. Interestingly, the simpler CE-models with
0 hidden units performed worse than the baseline.

6.2.5 Model Combination. We now describe how various model combina-
tion schemes affect prediction accuracy. We use the Bayes and the Maxent2
prediction models: we try to exploit the fact that these two models, being fun-
damentally different, tend to be complementary in some of their responses.
Adding the Maxent1 model to the combination would not have yield additional
improvements, as Maxent1 and Maxent2 are too similar. We chose the latter
because it has a slightly better prediction accuracy than the first. Our CE mod-
els are the corresponding MLPs because they clearly outperform the SLPs. The
results presented in Table XII are reported on the various length prediction
task for up to four words.

The combination schemes are the following: we run the two prediction models
in parallel and choose one of the proposed prediction hypotheses according to
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Table XI. User Simulation Results with Various

CE-Layer Configurationsa

Model CE Layer Typing Time SSaved

Maxent1 base 11.4%

all/00 10.9%

all/20 12.4%

sel/00 9.6%

sel/20 12.8%

Maxent2 base 13.3%

all/00 12.4%

all/20 13.4%

sel/00 12.7%

sel/20 13.6%

aThe base entries are for the base model; all means the

full feature sets, sel means selected ones; and the numbers

after the slashes describe the hidden units. The results

column gives estimated percentage of typing time saved

according to the user model.

Table XII. Prediction Accuracy of the Bayes and Maxent2

Model Compared with Combined Model Accuracy

Model Combination Prediction Accuracy

Prediction Model Combination Accuracy

Bayes alone 8.77

Maxent alone 22.23

Max native probability vote combination 17.49

Max CE vote combination 23.86

Optimal combination 27.79

the following voting criteria:

—Maximum CE vote: choose the prediction with the highest CE;

—Maximum native probability vote: choose the prediction with the highest
native probability.

As a baseline comparison, we use the accuracy of the individual native pre-
diction models. Then we compute the maximum gain we can expect with an
optimal model combination strategy, obtained by running an “oracle” that al-
ways picks the right answer.

The results are positive: the maximum CE voting scheme obtains a 29.31% of
the maximum possible accuracy gain over the best of the two individual models
(Maxent2). Moreover, if we choose the maximum native probability vote, the
overall accuracy actually drops. These results are a strong motivation for our
post-prediction confidence estimation approach: by training an additional CE
layer using the same confidence features and train data for different under-
lying prediction models we obtain more uniform estimates of the probability
of correctness. Contrary to the native probabilities, the CE probabilities are
compatible among the various underlying models and can be used for model
combinations.

The combination scheme is very basic and relies on maximum score vot-
ing. Other combination schemes (such as stacking Section 3.1) might be more
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adequate for the task but we wanted to show another possible use of the already
defined confidence scores.

We conclude that CE can be successfully used for Transtype: productivity
gains can be observed during simulations when confidence score is used for
deciding which translation predictions to present to the user, instead of us-
ing the base model probabilities. Moreover, the CE-based combination scheme,
although very simplistic, allow us to combine the results of two independent
translation systems exceeding the performance of each individual system.

7. DISCUSSION: CE ADVANTAGES AND LIMITATIONS

As described in Section 1, confidence measures can either be derived directly
from the base system or calculated by a separate CE layer. In this section, we
compare these two approaches.

Confidence measures that come directly from the base system have the obvi-
ous advantage of simplicity, particularly for probabilistic systems where scoring
functions can be used without modification. Apart from the work needed to cre-
ate a CE layer itself, effort is also required to produce the necessary training
corpus of examples of system output labelled with their correctness status, as
discussed in Section 4. For some tasks, like machine translation, this corpus
is substantially more difficult to produce than the one used to train the base
system, which may be already available (e.g., a parallel corpus).

A key advantage of using a CE layer is that is a separate module, distinct
from the base system. This has several implications:

—Because it specializes in solving the confidence problem, it often gives better
results than confidence measures derived directly from the base system, as
we have seen in this article.

—It can incorporate sources of knowledge that may be difficult or inconvenient
to add to the base system. These include features like sentence length for
MT that are good predictors of confidence but poor predictors of the correct
output. Because it is applied in a post-processing step, a CE layer can also
model properties of the search algorithm that are inaccessible to the base
system.

—The CE layer is smaller and lighter than the base system, and hence easier to
adapt to new domains and new users (modulo the availability of correctness
data for these contexts).

—It is possible to re-use CE software for different base systems.

The other main advantage to using a CE layer is that it can compute esti-
mates of correctness probabilities P (C = 1|x, y , k). The best alternatives from
the base system are posterior probabilities p( y |x), but these are often difficult to
extract, and they can be poor estimates. As described in Section 2, they are also
less useful than correctness probabilities due to the normalization constraint.
Correctness probabilities are useful in many contexts:

—In a decision-theoretic setting, probabilities are required in order to calculate
the lowest-cost output for a given input.
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—When a collection of heterogeneous models is available for some problem,
output probabilities provide a principled way of combining them.

—When multiplying conditional probabilities to compute joint distributions,
the accuracy of the result is crucially dependent on the stability of the condi-
tional estimates across different contexts. This is important for applications
like speech recognition and machine translation that perform searches over
a large space of output sentences, represented as sequences of words.

Thus, for many applications, the benefits from using a separate CE layer will
justify the extra effort involved.

8. CONCLUSION

We presented CE as a generic machine learning approach for computing confi-
dence measures for improving an NLP application. CE can be used if relevant
confidence features are found, if reliable automatic evaluation methods of the
base NLP technology exist and if large annotated corpora are available for
training and testing the CE models.

Applications benefit from a light CE-layer when the base application is fixed.
If potential base-model accuracy improvements are poor, the additional data is
more useful in practice for improving discriminability and removing wrong
outputs. We showed that the probabilities of correctness estimated by the CE
layer exceed the original probabilities in discrimination capacity.

CE can be used to combine results from different applications. In our MT ap-
plication, a model combination based on a maximum CE voting scheme yielded
a 29.31% accuracy improvement in maximum accuracy gain. A similar vot-
ing scheme using the native probabilities decreased the accuracy of the model
combination.

Prediction accuracy was not an important factor for determining the discrim-
ination capacity of the confidence estimate. However, the original probability
estimation was the most relevant confidence feature in most of our experiments.

We experimented with multi-layer perceptrons (MLPs) with 0 (similar to
Maxent models) and up to 20 hidden units. Results varied with the amount of
data available and the task, but overall, the use of a hidden units improved the
performance.

We intend to continue experimenting further with CE on other SMT systems
for other NLP tasks, such as language identification or parsing.
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