
COMPUTING PRACTICES 

Edgar H. Sibley 
Panel Editor 

Building and prototyping an agricultural electronic marketing system 
involved experimenting with distributed synchronization, atomic activity, 
and commit protocols and recovery algorithms. 

THE DESIGN AND BUILDING OF EUCHliRE, 
A DISTRIBUTED ELECTRONIC MARKETING 
SYSTEM 

JEAN-PIERRE BANATRE, MICHEL BANiiTRE, GUY LAPALME, 
and FLORIMOND PLOYETTE 

Recently, there has been growing interest in electronic 
marketing systems, particularly for agricultural prod- 
ucts [lo, 161. According to Lindeman Schlei, an elec- 
tronic marketing system provides 

a very efficient price discovery mechanism; it also separates 
the distinct functions of negotiating a trade and physically 
transferring a product by centralizing negotiations and de- 
centralizing product transfer. Its success depends on: reli- 
able technology, high trading volume, reliable grades and 
standards for descriptive selling and reasonable charges [16]. 

In this article, we describe the history and the develop- 
ment of Enchkre (meaning “auction” in French), a dis- 
tributed electronic marketing system that satisfies the 
criteria of speed, reliability, and fairness between buy- 
ers and sellers as required by the market. To achieve 
this, Enchere combines many original features that up 
to now have been applied mainly to separate research 
products: Enchere is a distributed system consisting of a 
loose network of autonomous microcomputer-based 
workstations communicating with each other via mes- 
sages. Reliability is guaranteed by means of atomic ac- 
tions that are supported by new hardware and software 
products. New stable memory boards were developed 
to guarantee the reliability of transactions implemented 
by dynamic process creations. 

This work has been partially supported by the Agence pour le Developpemenl 
de I’lnformation fADII fInformation Develomnent Aeencvl and bv the Societb 
de Fabrication et‘de dkalisation Electroni& (SOFKEL) ?5230-Vkm-sur- 
Seiche-France. 

0 1966 ACM OOOl-0762/66/0100-0019 750 

In this article, we examine the workings of a central- 
ized auction bidding system-extracting fundamental 
operating rules and principles and isolating the require- 
ments of a new electronic system. We then report on 
the proposed software and hardware structures-de- 
fined in that order-and their implementation in 
two steps: a working prototype run on a big system 
(MULTICS), and a second preindustrial system built 
from the first without modification of the original soft- 
ware ideas. 

THE ELECTRONIC MARKETING PROBLEM 
AND OUR SOLUTION 

Electronic Sales 
In Europe, agricultural products are traditionally auc- 
tioned by means of a system known as the “dutch 
clock.” In the dutch-clock auction, all buyers gather in 
one room where they are presented product lots for 
bidding by a sales manager representing the sellers. In 
front of this room stands a big clock with numbers 
around it representing possible prices for the lots (e.g., 
figures ranging from $2.00 to $0.50 in decrements of 
$0.05); the sales manager positions the arm of the clock 
at the starting price for the lot, and the arm descends 
regularly until one of the buyers in the room stops it by 
pushing a button in front of him or her. An electronic 
system identifies the person who responded first and 
reports this buyer to the sales manager who now de- 
cides to accept the offer or not. The pace is a fast one: 

Ianuary 1986 Volume 29 Number I Communications of the ACM 19 



Computing Practices 

The sale of a lot takes about 10 seconds. The dutch- 
clock system is well accepted by the sellers and buyers, 
but it requires that all participants be centralized in 
one place. 

In the system in Brittany, France, which served as 
the inspiration of our work, three such rooms are al- 
ready linked so that buyers in one room can bid on the 
lots presented in all three rooms. This interconnection 
helps minimize transportation costs, lessens variations 
between nearby sale rooms, and permits buyers a better 
choice and sellers a greater number of prospective buy- 
ers as well as an expanded market. In systems like the 
Brittany auction, the order of presentation of the lots is 
crucial because prices vary considerably depending on 
the time elapsed from the start of the sales: For a vari- 
ety of reasons, prices usually start low and go up in the 
middle of the sale and down at the end. To ensure 
fairness, the system permutes the lots of each seller 
daily; this causes no problem in the Brittany system 
because all sellers are members of the same organiza- 
tion that is responsible for setting up the auction and 
for compensating sellers whose lots are presented first. 

However, it is now necessary to expand the market 
to allow more than one seller organization. To achieve 
the same kind of “justice,” the lots of each seller should 
be interleaved; however, this will lengthen an already 
considerable total sale time of three to four hours. The 
problem is how to reconcile those two contradictory 
goals of speed and market expansion. 

Our solution relies on the following observation: Al- 
though each buyer might be interested in the lots of all 
sellers, he or she usually tends to satisfy his or her 
needs through only a few sellers [and often only one). 
Since the buyer tends to buy elsewhere only if he or 
she cannot find what he or she needs locally, we pro- 
posed the creation of logical sales rooms where each 
participant (buyer and seller) is given the means to deal 
with only the people he or she wishes. Each buyer uses 
a “workstation” consisting of a microcomputer linked to 
seller workstations through a combination of local and 
national networks. E:ach station implements algorithms 
that initiate communications between participants who 
want to deal with one another. The global system, 
which is implemented by local algorithms executed in- 
dependently on each microcomputer, is so structured 
that transactions involving disjoint groups of buyers 
and sellers can proceed in parallel. 

In this scenario, a buyer or seller uses a workstation 
consisting of a microprocessor-based control unit with a 
small display, a dutch clock, and keys that allow him or 
her to participate in the sales. There is also an ordinary 
screen display showing the results of all transactions 
being processed. Although the hardware for each user 
is the same, the software and logical meaning of each 
key are different depending on whether the user is the 
seller or buyer. A physical description of the system is 
given in [z]; here we will discuss only its operational 
aspects, beginning with the buyer’s version. 

The buyer chooses the sellers he or she wants to deal 
with and may change his or her choice at any time. 

The proposition from a seller is displayed on the buyers 
control unit, and the clock shows the starting price for 
the lot as given by the seller: the clock registers the 
regular downward movement of the price. When the 
buyer decides a particular price is agreeable, he or she 
pushes a key to send the offer to the seller. The buyer 
then awaits an answer from the seller telling the buyer 
if he or she has gotten the lot or not. The buyer may 
then receive a new offer (possibly from another seller). 
This offer is chosen by the system from the set of sell- 
ers with whom this particular buyer is dealing. 

The seller, of course, sees things rather differently. 
By pushing a key, the seller sends his or her proposition 
to interested buyers and waits for their offer. When all 
buyers have answered, the value of the best offer is 
displayed on the seller’s control unit; the seller decides 
either to accept or reject this offer and transmits this 
decision to the buyer. The seller may now send his or 
her next proposition. 

Application Requirements 
By its very nature, the electronic marketing context 
imposes unique demands on its computer implementa- 
tion in terms of the order of sales, fairness, reliability, 
extensibility, speed, and distribution. 

Electronic marketing requires that sales initiated by a 
seller are carried out sequentially. The concept of fair- 
ness between buyers and sellers requires that all buy- 
ers have equal opportunity to buy lots proposed by sell- 
ers, and that sellers have an equal chance of having 
their proposition seen at any given time by different 
buyers, there being no a priori order established among 
sellers. This fairness doctrine differs somewhat from 
that commonly referred to in the distributed-systems 
literature in the sense that it must take into account 
competition between sellers and not only the absence 
of “starvation’‘-the failure to take into account lots of 
a given seller due to unfair choices by the system. A 
crucial doctrine in the context of commercial market- 
ing, fairness must be enforced in all cases-including 
defective functioning. However, it cannot be achieved 
at the expense of real-time efficiency measured in 
terms of availability and speed of processing. The fair- 
ness doctrine requires that seller lots be equitably in- 
terlaced and not indefinitely delayed, and that buyers 
make their decisions based on the same available 
information. 

Ensuring reliability means that, at each session, 
Enchere must provide complete service throughout the 
session (several hours a day). Should a failure occur, 
buyers and sellers must be able to continue the sales, 
even though transaction time may be lengthened. 

Another requirement is that the system architecture 
be extensible: It should permit the easy insertion and 
removal of buyers and sellers without changing the 
overall architecture. The question of speed is also criti- 
cal because all current systems are acknowledged to be 
unacceptably slow due to deficient computing power. 
Finally, an electronic auction system of this kind is by 
definition a distributed one: Users may be spread over a 

20 Communications of the ACM januaty 1986 Volume 29 Number 1 



large geographical area encompassing a region, a coun- 
try, or even several countries. 

User Requirements 
An electronic marketing system is used by sellers and 
buyers cooperating (or competing) to negotiate the ex- 
change of goods. In this exchange, the following consid- 
erations are critical: 

Ease of use. Since buyers and sellers are not com- 
puter specialists, operating commands must be as sim- 
ple as possible and yet powerful enough to conclude a 
deal with dispatch (i.e., in 10 seconds). 

Confidentiality. The system must guarantee a certain 
confidentiality with respect to buyer-seller business 
dealings. Specifically, a buyer must not know the bids 
of other buyers except for the price of the highest, 
which is broadcast to everyone. A seller, on the other 
hand, must receive only the bids relating to his or her 
sales and not the bids made by buyers dealing with 
other sellers. The system must also ensure that a user 
can neither block another user nor take the place of 
one. 

Autonomy. Every user should be independent in the 
sense of being able to join or leave the service as he 
or she wishes. 

l Auailability of personal computing power. Since the 
auctions generally take only two or three hours per 
day, the system should be usable for other purposes 
during the remaining hours. 

ARCHITECTURAL DESIGN 
To build an architecture for Enchere that respects the 
autonomy and independence of each user while provid- 
ing acceptable performance, two possibilities were stud- 
ied: (1) a multiprocessor architecture on a central site 
that could be accessed via specialized terminals, and (2) 
a distributed architecture where each user would have 
a personal computer and Enchere would be the set of 
all those computers communicating with each other to 
complete a sale. 

In a centralized system, achieving user autonomy 
and flexibility (e.g., users’ accessing or leaving the sys- 
tem at will, and buyers’ choosing the sellers they want 
to trade with) is difficult because all users are depen- 
dent on the central site and unwanted dependencies 
are created between users. A seller, for example, might 
depend on a particular buyer, or vice versa, even if the 
one is not particularly interested in trading with the 
other. To solve those problems, we defined the Enchere 
session as a set of autonomous units [4] linked by a 
communication network, where the implementation is 
based not on one site but as many sites as there are 
users at any given time. 

This means that the malfunctioning of a site affects 
only the users depending on it for their transactions. It 
also means that users can work separately: Many sale 
sessions can proceed in parallel as long as their set of 
users is disjoint. 

Ianuay 1986 Volume 29 Number 1 

Computiq Practices 

Logical Structure of the Application 
The implementation of each sale is modeled around the 
notion of an “activity” [l, 5]-composed of a set of 
cooperating processes (one at each site)-so that the 
overall structure of Enchere at any time becomes a 
“tree” of activities. 

The initial activity involves an opening process at 
each user site whereby the user signals a willingness to 
participate in the sale. By this process, each user is 
made known to the others, and communication links to 
processes are established for dealing explicitly with the 
sale. The user-site processes join or leave this activity 
dynamically: A user uninterested in a sale may leave 
while the others continue without him or her. When all 
users have left the network, this activity ceases. 

For each lot offered for sale, dependent activities are 
created that involve an instance of a seller process and 
instances of each buyer process interested in the sale. 
In the following configuration of buyers and sellers, 

three sellers sites-SSl, SSZ, SS3, and 
six buyers sites-B% to BS6, 

dependencies between buyers and sellers are defined 
by the sets of buyers SB(. . .) interested in a given 
seller. Given the following sets of interested buyers and 
sellers, 

SB(SS1) = (BSl, BS2, BS3); 

SB(SS2) = (BS4, BS5); 

SB(SS3) = (BSl, BS5, BS6). 

The buyers interested in making transactions with 
SS2 are BS4 and BS5. Should all three sellers initiate a 
sale, an activity structure results (Figure 1, p. 22) 
wherein PBij is the ith instance of a process represent- 
ing the behavior of buyer BSj and belonging to the ith 
activity, and PSij is the ith instance of a process repre- 
senting the behavior of seller SSj. At the BSl buyer site, 
there is a buyer process involved in an activity for the 
sale of a lot from SST, and another dealing with SS3. 

By virtue of this activity scheme, all the dynamic 
properties of the application (Le., independence, asyn- 
chronism, and competition for CPU time or memory 
management of the processes) are taken care of by the 
operating system and are of no concern to the applica- 
tion programmer. With this scheme in place, the sale 
scenario becomes very simple, as can be seen from the 
Ada@ program given in the Appendix. 

These sale processes terminate as soon as a sale has 
been completed. Note that a buyer is notified of the 
rejection of his or her offer as soon as a better one is 
received by the seller; the buyer may then participate 
in another sale because he or she is sure he or she will 
not acquire that particular lot. The synchronization 
mechanism for this “optimization” is taken care of by 
the activity mechanism and does not have to be dealt 
with in the application program. 

Another important characteristic of the sale process 

Ada is a registered trademark of the U.S. Government (Ada Joint Program 
Office]. 

Communications of the ACM 21 



Computing Practices 

Activity 1 Activity 2 Activity 3 

FIGURE 1. The Activity Structure 

is the indivisibility associated with the execution of an 
activity. Two activiiies (father and son) only communi- 
cate by parameters on creation or by result on comple- 
tion. The characteristics and consequences of this indi- 
visibility and atomicity, which are akin to the transac- 
tion concept found in database systems [7], are de- 
scribed in detail in 121. 

Physical Architecture of the Application 
Ideally, every user i.s provided with his or her own 
workstation: Enchere is then implemented by a set of 
workstations interconnected through a communication 
system as shown in Figure 2, where SW means seller 
workstation, BW bu:yer workstation, and CS communi- 
cation system. 

In the current configuration, every user is provided 
with a personal terminal consisting of two devices: an 
application processor (AP), which manages the auc- 
tions, and a workstation (WS), which is the Enchere 
terminal. The WS is used for accessing the Enchere 
service, and every WS is connected to an AP. 

Application Processor:;. Enchere’s APs are built from 

sw\, 
SW -SW 

cs 

/ 

/ 

BW \ 
BW 

FIGURE 2. Ench&e Architecture 

two microprocessors (I8086 and I8085), which are con- 
nected via Intel Multibus” and use disk storage. A sta- 
ble storage (discussed in more detail in Design and Im- 
plementation of Stable Storage, p. 26) is also connected 
to the 18086 through Multibus. 

The 18086 processor manages the auctions and the 
local peripherals, while the 18085 acts as front-end 
processor for the 18086, controlling communication to 
and from the workstations and the communication sys- 
tem (Figure 3). A common memory facility is provided 
in addition to the stable storage mentioned above. 

The Workstation. The workstation consists of the usual 
display terminal and specialized command terminals 
that are managed by a microprocessor (Figure 4). The 
command terminal provides the commands necessary 
for participating in a sale-new sale, offer, refusal, etc. 
Every such command is communicated via a special 
button pushed by the user. These command terminals 
are also equipped with a special display that shows 
instantly all displayable information concerning the 
current sale. 

The Communication System. The application is not tied 
to any particular communication system in order to 
ensure that Enchere can be installed on any “machine” 
possessing what we call the minimum interface proper- 
ties: These include a communication system that allows 
message exchanges with acknowledgment, and commu- 
nication error detection and notification. 

CONSTRUCTING A PROTOTYPE 
Since the proposed system was new and innovative 
compared with existing models, it was difficult to fore- 
see the reactions of potential users. Moreover, for var- 
ious reasons such as credibility and funding, it was 
important to demonstrate in advance the external char- 
acteristics of the new system. 
Multibus is a registered trademark of the Intel Corporation. 

22 Communications of the ACM Ianuary 1986 Volume 29 Number 1 



Computing Practices 

Toward 

f- the 

communication 
system 

Common Stable 
memory storage 

I-8085 

Multibus 

Toward the 

1 
workstations 

FIGURE 3. The Application Processor 

With these considerations in mind, it was decided to 
approach the prototype in two steps. Constructing a 
first prototype on a big system (MULTICS in our case) 
would demonstrate the external features of EnchGre to 
the eventual user, a nonspecialist in computing. This 
system would be centralized. Then, depending on user 
reception of the first prototype, a second prototype-a 
preindustrial system-would be built. 

Since the budget for developing these prototypes was 
limited, some design decisions had to be made very 
early to ensure that the major part of the software pro- 
duced for the first prototype would be reusable for the 
second. Specifically, it was decided that the final struc- 
ture of the system would be “frozen” at the time of the 
first prototype. The second prototype would provide 
only an alternate implementation of the same abstract 
structure. Second, to limit code rewriting, the software 
tools used in the development of both prototypes were 
to be the same. This was achieved by virtue of a local 
language for microprocessor applications whose com- 
piler produces intermediate code for a virtual machine, 
and then appropriate code for the actual target ma- 
chine. 

Implementing the First Prototype 
The emulation of the Enchgre activity structure was 
done on MULTICS, a process-oriented operating system 
[14]. Under MULTICS, when a user logs on, a process is 
created and associated with this particular terminal. 
This process can then create other noninteractive pro- 
cesses called “absentees,” which in turn spark other 
processes and so on. The processes communicate via a 
system module called IPC (InterProcess Communica- 
tion), which permits the sending of short control signals 
by means of unidirectional channels. Using these tools 
and a mutual exclusion mechanism, we built a commu- 
nication system among instances of processes, the 
structure of which is shown in Figure 5. We also devel- 
oped a probe system that allowed us to keep track of all 

Toward the application processor 

Display terminal 

. 

Command terminals 

FIGURE 4. The Workstation 

r----w ---- --------- --__ 

I 1 

I MULTICS 1 

I I Buyer 1 

Seller 1 i 
I 
I Buyer 2 
I 

Seller 2 I 
I 

I 
I Buyer 3 

I 
I- ----------------- ,’ 

FIGURE 5. Architecture on the MULTICS System 

lanuary 1986 Volume 29 Number I Communications of the ACM 23 



Computing Practices 

simultaneous messages; this probe enabled us to simu- 
late breakdowns and time-outs, and to evaluate the ef- 
fects of software and hardware failures. 

IJsers are linked .via the MULTICS system. Each logi- 
cal entity associated with a user incorporates many 
modules, a few of which are implemented on the work- 
station microcomputer and the others under MULTICS. 
Each of the buyer and seller boxes given in Figure 5 
can be subdivided as shown in Figure 6. 

As the software structure of Enchere is based on the 
notion of activity, its impleme:ntation under MULTICS 
also reflects this orientation. For example, in the sale of 
a lot from seller S to two buyers Bl and B2, each site is 
represented by a site process that interprets commands 
issued by the user. Thus, we have three site processes: 
SS for site S, and SB1 and SB2 for sites Bl and B2, 
respectively. When a new-sale command is issued on 
site S, process SS signifies that a new activity involving 
itself and SBl and SB2 has to be initiated. This is 
achieved by creating an instance of seller process (PS) 
on site S and two instances (PHl and PB2) of buyer 
process on sites Bl and B2. These processes are linked 
to form a new activity as summarized in Figure 7. 

The buyer site, on the other hand, may create many 
instances of processes PBi, one for each independent 
sale (i.e., for sales acrtivated by distinct sellers). Al- 
though costly, this approach has the advantage of sim- 

plicity and mirrors almost exactly the software struc- 
ture decided upon. 

Although this first prototype was important in the 
sense that it provided a working model of the system 
and user feedback, and also validated our structuring 
methods, it did not permit a fully satisfactory quantita- 
tive evaluation of the proposed service because, in a 
time-shared system, the number of external users can 
greatly influence the response time to commands. 

This first experiment made clear that the original 
idea of having identical workstation keyboards for both 
sellers and buyers was not a good one in terms of ease 
of use: Too many functions were given to each partici- 
pant, so for the subsequent experiment we designed 
two different keyboards. 

The experiment also demonstrated the need for sim- 
plicity. In developing the first prototype, we should 
have restricted ourselves to a small demonstration unit, 
providing an external view of the system and avoided 
putting in place the entire activity structure, which 
proved too expensive for use in real time. Although a 
test of the logical feasibility of the structure was impor- 
tant enough to warrant an experimental implementa- 
tion, it should have been independent of the demon- 
stration unit. 

However, the demonstration was well received and 
prompted us (and those investing in the project) to con- 

Display 

,-__ -~-----__-___---- 
I 
I MULTICS 
I 
I 

terminal 
.----- I .--- - - 

I I 

Micro ======$=== Concentrator = = = Site 
Buyer --- 

process --- 
process I 4 

280 I process I 

ii 
.--v-----l .--e----J 

Command 
termhal 

FIGURE 6. Representation of a Buyer 

24 Communications of the ACM fanuary 1986 Volume 29 Number 1 



Computing Practices 

ss SBl S62 

FIGURE 7. MULTICS Activity Implementation 

tinue in the same vein: that is, to implement both site 
and sale processes on a network of microcomputers 
linked together first via MULTICS (which would then 
be confined to a “safe” network role) and ultimately via 
a combination of local and national networks. 

THE SECOND PROTOTYPE 
The second prototype consisted of three application 
processors and five workstations connected, in a first 
stage, through a concentrator (18086). (Enchgre is so de- 
signed that no problem should arise when it is trans- 
ported onto a network.) In this section, we examine the 
second prototype as it incorporates the features of fair- 
ness and atomic transactions. 

Fairness 
Presenting propositions to various buyers in the same 
order for each seller ensures that buyers may all elabo- 
rate their strategy based on the same information. From 
a technical viewpoint, this is critical for avoiding dead- 
locks, since a buyer must terminate one sale before 
participating in another. Imagine the situation where 
two lots Ll and L2 are to be sold, Ll proposed by seller 
Sl and L2 by S2. Two buyers Bl and B2 compete for 
these lots. If Bl bids on Ll first (transaction Tl) and B2 
bids on L2 first (transaction T2), neither T1 nor T2 will 
ever be completed because in order to be completed Tl 
needs a bid from B2, who cannot provide it before com- 
pletion of T2 (the usual deadlock situation). 

To ensure that propositions are presented to buyers 
in the same order for each seller, a time stamp giving 
the (local real) time of emission and the name of the 
sender is appended to the message corresponding to the 
proposition of a seller. To choose the next proposition, 
the system always takes the message having the small- 
est time stamp. When the times are the same, an order 
of priority can be based on the names of the sellers. 
Lamport proposes a way to achieve this without neces- 
sarily defining a priori a total order on the names [8]. 

Ensuring that a selle! has finished with a sale before 
starting another requires that the local choices (made 
by the computers on each buyer site) be coherent. That 

is, the computer must determine if the buyer has al- 
ready received the “oldest” proposition before making 
the choice of propositions to be presented next. To do 
this, it is sufficient that each buyer-site B select at his 
or her local time H(B) the seller proposition possessing 
the smallest time stamp less than H(B) - DT. (DT is the 
maximum transmission delay between two sites.) 

The above solution, however, is not sufficiently pow- 
erful to ensure that no priority is given by a buyer to 
the proposition of a particular seller, as can be seen in 
the following example: 

Sl, S2, and S3: seller sites; 
Bi: buyer site linked to Sl, S2, and S3. 

Sl starts a sale (~11) with his or her local time 
hl = 10, 

S2 starts a sale (~12) with his or her local time 
h2 = 15, and 

S3 starts a sale (~13) with his or her local time 
h3 = 20. 

The time-stamp solution instructs Bi to choose sll. As- 
suming that the length of the sale is 3 units of time and 
DT is 1 unit of time, when sll finishes, Sl initiates 
another transaction sll’, which is stamped (hl’ = 15), 
and Bi chooses ~12. When ~12 is finished, Bi must 
choose between sll’ and ~13. The time-stamp method 
forces Bi to select sll’, thereby giving priority to Sl, 
whereas 93 should have been chosen. 

Instead,, the buyer site Bi (dealing with sales of many 
sellers) must be able to compare the times given by the 
local clocks of these seller sites: That is, if, at a given 
time H(Bi), two sales’ time stamps of sellers Sj and Sk 
are H(Sj) and H(Sk) such that for Bi (H(Sj) < H(Sk)), the 
next sale started by Sj will be stamped by H(Sj)’ > 
H(Sk). In our example, sll’ should have been dated by 
a value greater than 20. 

To solve this problem, we introduce a notion of 
“fuzzy” time that is defined as follows: The local clocks 
of user sites Ul, . . , Un show the same fuzzy time as 
the local clock of a site Ui, if and only If, 1 H(Uj) - 
H(Ui) 1 < dt. (dt is the maximal drift between the clocks 
of user sites Uj and the one of Ui.) Assuming the length 
of a transaction is greater than 2 x dt and that all seller 
sites for a given buyer have the same fuzzy time, then 
fairness is fully guaranteed [2]. 

Cases where these conditions are not fulfilled have 
been studied carefully. In particular, algorithms are 
being reviewed that allow clock resynchronization fol- 
lowing misfunctioning of a site. 

ACHIEVING RELIABILITY 
The Enchbre system is designed to resist both software 
and hardware faults that may result in uncontrolled 
memory accesses. The crucial impact of uncontrolled 
memory access on the EnchGre system was first re- 
vealed with the construction of the initial prototype. To 
ensure high reliability and avoid memory degradation, 
steps were taken in two main areas: implementing sta- 
ble storage and instituting commit protocols and a re- 
covery algorithm. 

]anuary 1986 Volume 29 Number I Communications of the ACM 25 



Computing Practices 

Design and Implementation of Stable Storage 
Stable storage [9] is generally viewed as a memory de- 
vice whose physical storage is stable (i.e., information 
does not degrade over time) and whose write operation 
is atomic. Usually, stable storage is built from disks, 
which, although they do not directly provide stable 
storage, do possess properties from which stable storage 
can be implemented. In EnchGre, each application pro- 
cessor is equipped with stable storage that may contain 
two different types of objects: (1) objects of small size 
that are accessed directly by processes (e.g., variables) 
and whose lifetime is that of the activity that created 
them, and (2) objects that are stored for a long period of 
time (e.g., files). Since objects of type (1) cannot realisti- 
cally be stored on devices like disks, as the time neces- 
sary to access them would be excessive, EnchGre’s sta- 
ble storage is constructed of two devices: a stable RAM 
unit (SR) that is a part of the machine address space; 
and a disk unit (DM) used to slore long-term informa- 
tion (files). 

As the SR memory is built from an ordinary RAM 
that is part of the machine address space, it is vulnera- 
ble to any erroneous program. However, in Enchere, 
following the strategy advanced in [IS], hardware 
and software mechanisms were designed to make the 
SR-memory prototype unlikely to be damaged in the 
event of uncontrolled accesses. 

Structure of the SRGvlemory Prototype. The SR memory 
is represented in Figure 8, where 

bi (i E [l, 81) are memory banks, a,nd each bi contains 
8K bytes; 

ri (ri E [I, 81) are two-bit registers that are associated 
with bi’s and contain current access rights to the 
concerned memo:ry bank: 

AT is an access table made out of 32 bytes--the jth bit 
of the ith byte of AT is set to 1 if the j memory bank 

AT 

bl 

ri r8 

bi 

FIGURE 8. SR Memory 

b8 

may be addressed (see explanation below). 

Using SR Memory. A process p wanting to use SR 
would first request allocation of a memory bank. This 
executes the primitive allocate, which 

allocates a free bank bi (0 < i < 9); 
searches for a free entry k in AT, and sets the ith bit of 

AT[k] to 1 and the other bits of AT[k] to 0; 
returns the physical address (adr) of bi and the value 

k-the value k will be used later as a key for access- 
ing memory bank bi. 

Imagine now that p wants to write an object located 
at the address adr0 into an allocated memory bank at 
the address (adr, x) with key k. It first executes the 
primitive open(k, W) where w is the write access right. 
The effect is the following: Register ri corresponding to 
the memory bank bi referred to in AT[k] is set to the 
write access right. Then p executes the primitive 
write(adr0, (adr, x)), which checks that the memory bank 
of address adr is opened, and if so, the write operation 
is executed. After execution of the write primitive, ac- 
cess rights corresponding to the considered memory 
bank are set to “no right”: Actually, the execution of 
the two instructions open; write is indivisible. Although 
we have used the example of a write operation, the 
same applies to a read operation. 

This very simple hardware mechanism ensures that 
no direct access to stable memory can be performed; 
and all access is controlled by means of a key mecha- 
nism: Using an erroneous key leads to a memory-access 
failure. 

This mechanism works satisfactorily if every memory 
bank is accessed by a unique process; however, in our 
system several processes may share the same memory 
bank. To ensure that a process does not damage infor- 
mation belonging to another process sharing the same 
memory bank, the following mechanisms have to be 
enforced. 

The Problem of Information Sharing. In the situation 
where n processes pi, (i E [l, n]) sharing the same mem- 
ory bank, we would like to implement a mechanism 
such that, if pi wants to access pi’s (j # i) stable objects, 
a memory-access failure occurs. 

In the solution we propose, every pi possesses a table 
that providks access to its own stable memory. Protec- 
tion of this table is ensured using a seal mechanism 
enforced by cryptography [6]. Entries in the table are 
encrypted (at the creation of process pi) with a key ki. 
Only entries decrypted with the appropriate key de- 
liver significant addresses, and all attempts to decrypt 
with a bad key lead to memory-access failure. 

The above pi table (with encrypted entries) is stored 
in the working space of process pi. A nonencrypted 
version is kept in stable storage and may be used (after 
encryption) in the event of rollback subsequent to a 
failure. The EnchGre system does not prevent a process 
from forging an encryption key: Our sole concern is 
secure table data access. 

26 Communications of the ACM fanuay 1986 Volume 29 Number 1 



Stable Storage Management. SR-memory banks are cou- 
pled in su& a way-that every object in the SR memory 
is represented by two copies. With two coupled mem- 
ory banks bl and b2, only one bank (bl or b2) may be 
granted write access at any time. The system also en- 
sures that the transition (write access for bl, read ac- 
cess for b2) + (read access for bl, write access for b2) 
appears indivisible. 

To atomically write an object 0 from volatile mem- 
ory to SR (Figure 9), a copy of 0 has to be made atomi- 
cally on both memory banks. To do this, 0 is first cop- 
ied onto bl (giving Obl), and Obl is then copied onto b2 
(Ob2). This ensures that Obl and Ob2 are the same. On 
the other hand, copying 0 first onto bl and then onto 
b2 could produce unexpected results as 0 is in volatile 
memory and might be damaged between the writing on 
bl and then on b2. 

Should a crash occur as bl is in read access right and 
b2 is in write access right, Obl is not written on b2. 
However, since the system’s error-recovery mecha- 
nisms ensure that this copy is made at a later time, the 
write is considered “done.” On the other hand, should a 
crash occur while bl is in write access right and b2 in 
read access right, the copying of Obl to b2 is not possi- 
ble, and the write operation is considered “not done.” 

To achieve atomic transfers from SR to disks, we 
employ a strategy similar to that proposed by Lampson 
and Sturgis [9], except that, in EnchGre, the use of SR 
memory ensures that objects to be copied onto disks 
cannot be damaged between transfers as SR is protected 
against uncontrolled accesses. 

The hardware devices used to implement stable stor- 
age were designed and developed locally. Performance 
evaluations of these facilities show that access time to 
SR memory is twice that to the usual RAM memory, 
although it is much faster than access time obtained for 
stable storage built from disks. For example, writing 
1024 bytes on our SR memory takes 20 ms (with the 
18086 processor), and the same operation in the DFS 
system takes 140 ms (with the ALTO processor) [ll]. 
Power-failure damages to stable memory are minimized 
by battery backup to the memory boards. 

Commit Protocols and Recovery Algorithms 
To ensure coherent update of, and access to, objects in 
an unreliable environment, we use a model similar to 
Reed’s [IS]. In this model, an object is viewed as the 
history of all the states it has assumed since its incep- 
tion. Each state is called a version. A version is quali- 
fied by its value and a time attribute that specifies the 
time interval during which the object was in the state 
represented by this version. The ordering between 
events is realized by a pseudotime (sequence of inte- 
gers). A read operation with time attribute t selects the 
version that has the highest start time lower than t. If 
the end time of this version is lower than t, it is set to t. 
A write operation with time attribute t creates a token 
that has to be committed before becoming a version, if t 
is greater than the end time of the last version; other- 

Computing Practices 

bl b2 

FIGURE 9. Writing an Object in Stable Storage Memory 

wise it is aborted. The start time of this token is t. 
This simple model provides the basis for synchroni- 

zation and recovery in decentralized systems. To 
achieve better performance in Enchhre, we simplified 
the basic model by limiting the number of versions 
allowed for a given object and allowing a token to be 
modified by the creating activity. 

A particular property of the application that makes it 
possible to activate a transaction from within another 
one led us to the implementation of nested activities. 
This implementation has been fully realized and consti- 
tutes an original piece of work covered in detail in [2]. 

DISCUSSION 
Enchtire represents the culmination of a 12-person-year 
effort that resulted in the implementation of a com- 
pletely distributed operating system. 

Although the particularities of this application have 
somewhat limited the generality of the operating sys- 
tem, which can be qualified as “object oriented,” it is 
possible to devise a system that will handle reliably, 
not only files, but all types of objects used by processes. 
This makes us feel that the work presented here could 
be generalized to produce a general-purpose object- 
oriented distributed operating system, which is the ori- 
entation of our present research. 

There are related projects (e.g., EDEN [3], LOCUS 
[12]) involved in defining and implementing concepts 
like atomic actions and decentralized control. Our main 
originality lies in having addressed these research is- 
sues in terms of a specific application, which has al- 
lowed us to study and experiment with some major 
operating-system problems, resolution of which proved 
interesting in their own right. 

Acknowledgments. The authors gratefully acknowl- 
edge the contributions of B. Decouty, Y. Prunault, and 
L. Ungaro (“Atelier Micro”) and P. Heringer (SOFREL) 
to the design and implementation of the Enchtire sys- 
tem. Thanks are also due to J. le Palmec for his advice 
during the five years of the project. 

]anua y 1986 Volume 29 Number 1 Communications of the ACM 27 



Computing Practices 

APPENDIX 

type Lot is 
record 

- - su.itable fields for lot description 
end record; 

type Seller; 
type NameOfSeller is access Seller; 
type Buyer; 
type NameOfBuyer is access Buyer; 

task type Buyer is 
entry StartBuyer(Me:NameOfBuyer); 
entry Proposition(Name:NameOfSeller;TheLot:Lot); 
entry Decision(AcceptedOffer:Boolean); 

end Buyer; 
MaximumNumberOfBuyers: constant Positive := -- suitable value 
subtype PossibleBuyers iS Natural range 

O..MaximumNumberOfBuyers; 
type SetOfBuyers is array(PossibleBuyers)of NameOfBuyer; 

task Seller is 
entry StartSeller(Me : NameOfSeller; 

Numbe.rOfBuyers: PossibleBuyers; 
MyBuyers : SetOfBuyers; 
Mylot : Lot); 

entry Of:Eer(Name:NameOfBuyer;Offer:Price); 
end Seller; 

task body Buyer is 
Me : NameOfBuyer; 
TheLot : Lot; 
PlyOffer: Price; 
Name : NameOfSeller; 

begin 
accept StartBuyer(Me:NameOfBuyer) do 

Buyer.Me := Me; 
end StartBuyer; 
accept Proposition(Name:NameOfSeller;TheLot:Lot) do 

Buyer.TheLot := TheLot; 
Buyer.Name := Name; 

end Proposition; 
-- display TheLot description 
-- ask the price the user wants to offer 
MyOffl?r := -- value given by the user 
Name.Offer(Me,MyOffer); 
accept Decision(AcceptedOffer:Boolean) do 

-- display the Decision to the user 
end Decision; 

end Buyer; 

task body Seller is 
Me 
NumberOfBuyers : 
MyBuyers 
MyLot 
Name 
Offer : 
BestOffer 
Taker 

NameOfSeller; 
PossibleBuyers; 
SetOfBuyers; 
Lot; 
NameOfBuyer; 
Price; 
Price := 0; 
NameOfBuyer := null; 

28 Communications of the ACM \anuary 1986 Volume 29 Number 1 



Computirfg Practices 

begin 
accept StartSeller(Me : NameOfSeller; 

NumberOfBuyers: PossibleBuyers; 
MyBuyers : SetOfBuyers; 
Mylot : Lot) do 

Seller.NumberOfBuyers := NumberOfBuyers; 
Seller.MyBuyers := MyBuyers; 
Seller.MyLot := Lot; 

end StartSeller; 
for I in 1.. NumberOfBuyers loop 

MyBuyers(I).Proposition(Mylot); 
end loop; 
for I in 1.. NumberOfBuyers loop 

accept Offer(Name:NameOfBuyer; 0ffer:Price) do 
Seller.Name := Name; 
Seller.Offer := Offer; 

end Offer; 
if Offer > BestOffer then 

If Taker /= null then 
Taker.Decision(False); 

end if; 
BestOffer := Offer; 
Taker := Name; 

else 
Name.Decision(False); 

end if; 
end loop; 
Taker.Decision(True); 

end Seller; 

REFERENCES 
1. Ban&e. J.P., and Ban&e. M. Language features for the description 

of cooperating processes. In Proceedings of the 4th Infernational CO~I- 
ference on Softzoare Etrgineerirtg (Munich, Germany, Sept. 17-19). 
1979,pp. 308-314. 

2. Ban&e, M. Le syst&ne Enchbre: Une expLrience dans la conception 
et la r&lisation d’un systbme rbparti. Doctoral d’Etat, Univ. of 
Rennes. France, Mar. 1984. 

3. Black, A.P. An asymmetric stream communication system. In Pro- 
ceedirlgs of the 9th Symposium on Operating Systems Principles (Bretton 
Wood, N.H.. Oct. 10-13). ACM, New York, 1983, pp. 4-10. 

4. Clark, D.D., and Svobodova, L. Design of distributed systems sup- 
porting local autonomy. Dig. Pap. COMPCON (Spring 1980), 438-444. 

5. Ellis, C.S., Feldman, J.E., and Heliotis. J.E. Language constructs and 
support systems for distributed computing. TR-102, Univ. of Roches- 
ter. New York, May 1982. 

6. Gifford, D.K. Information storage in a decentralized computer sys- 
tem. CSL-81-8, Xerox Palo Alto Research Center, Calif.. Mar. 1982. 

7. Gray, J.N. Nofes on Database Operating Sysfems. LNCS 60. Springer- 
Verlag, New York, 1978. pp. 393-481. 

8. Lamport, L. Time, clocks, and the ordering of events in a distributed 
system. Commun. ACM 21, 7 (July 1978), 558-565. 

9. Lampson. B.W., and Sturgis, H. Crash recovery in a distributed data 
storage system. Working Pap., Xerox Palo Alto Research Center, 
Calif., Nov. 1976. 

10. Lane, S., Ed. Proceedings of Elecfronic Trading ofAgricu/fural Commodi- 
ties Seminar. Winnipeg, Canada, Nov. 1981. 

11. Mitchell, J.G.. and Dion. J. A comparison of two network-based file 
servers. Commute. ACM 25,4 (Apr. 1982). 233-245. 

12. Mueller, E.T., Moore. J.D., and Popek, G.J. A nested transaction 
mechanism for LOCUS. In Proceedings of the 9th Symposium on Oper- 
ating Sysfems Principles (Bretton Wood, N.H., Oct. 10-13). ACM, New 
York, 1983. pp. 71-89. 

13. Needham, R.M., Herbert. A.J., and Mitchell, J.C. How to connect 
stable memory to a computer. Oper. Sysf. Reo. 17. 1 (Jan. 1983), 16. 

14. Organick. E.I. The Mulfics Systent: An Examinafion of ifs Sfrucfure. MIT 
Press, Cambridge, Mass., 1972. 

15. Reed, D.P. Implementing atomic actions on decentralized data. ACM 
Trans. Compuf. Sysf. I, 1 (Feb. 1983), 3-23. 

16. Sporleder, T.L.. Ed. Proceedings of the National Symposium on Elec- 
tronic Marketing ofAgricu/fural Commodities. Texas A&M Univ.. Col- 
lege Station, Tex., Mar. 1980. 

CR Categories and Subject Descriptors: C.2.4 [Computer-Communi- 
cation Networks]: Distributed Systems-distributed applications; H.4.3 
[Information Systems Applications]: Communications Applications 

General Terms: Design, Reliability 
Additional Key Words and Phrases: auction bidding system, syn- 

chronization 

Received 9/84: accepted l/85; revised 3/85 

Authors’ Present Address: Jean-Pierre Ban&e, Michel Ban&e and 
Florimond Ploy&e. IRISA-INRIA, Campus Universitaire de Beaulieu, 
Avenue du C&16ral Leclerc 35042, Rennes Cbdex, France; Guy Lapalme. 
Universitk de Mont&l, D6partement de I.R.O., C.P. 6128, Succ. A, Mon- 
t&d. P.Q., H3C 377, Canada. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct commer- 
cial advantage. the ACM copyright notice and the title of the publication 
and its date appear. and notice is given that copying is by permission of 
the Association for Computing Machinery. To copy otherwise, or to 
republish, requires a fee and/or specific permission. 

lanuay 1986 Volume 29 Number 1 Communications of the ACM 29 


