
Heterogeneous Web Data Extraction using Ontology

Hicham Snoussi
Centre de Recherche Informatique

de Montréal
550 rue Sherbrooke, suite 100,

Montréal, Canada H3A 1B9

hsnoussi@crim.ca

Laurent Magnin
Centre de Recherche Informatique

de Montréal
550 rue Sherbrooke, suite 100,

Montréal, Canada H3A 1B9

lmagnin@crim.ca

Jian-Yun Nie
Université de Montréal

C.P. 6128, succ CENTRE-VILLE

Montreal, H3C 3J7 Canada

nie@iro.umontreal.ca

ABSTRACT
Multi-agent systems can be fully developed only
when they have access to a large number of
information sources. These latter are becoming more
and more available on the Internet in form of web
pages. This paper does not deal with the problem of
information retrieval, but rather the extraction of data
from HTML web pages in order to make them usable
by autonomous agents. This problem is not trivial
because of the heterogeneity of web pages. We
describe our approach to facilitate the formalization,
extraction and grouping of data from different
sources. To do this, we developed a utility tool that
assists us in generating a uniform description for each
information source, using a descriptive domain
ontology. Users and agents can query the extracted
data using a standard querying interface. The ultimate
goal of this tool is to provide useful information to
autonomous agents.

Keywords : data extraction, WEB, ontology, agent,
XML.

1. INTRODUCTION
The Internet contains a huge number of information
sources of different kinds. Even if a user has the
possibility of browsing the Internet, the search of
relevant information is still a difficult task. Most
search engines use keywords to identify possible
answers to a user's query, and return a list of links to
the documents. Many of the returned documents are
not relevant to the query, and the user often has to
browse the returned document list to find relevant
information.

Although a search engine provides useful help for
users to identify relevant information, it cannot be
used by a software agent to obtain reliable data to
fulfil its tasks. This is mainly due to the lack of
precision and standard formalism of the returned
answers. In addition, current search engines are more
focussed on static data on the web rather than
dynamic data that constantly change, such as weather
forecast, stock exchange information, etc. Such data
are more and more required by intelligent agents. If
there is a way to extract and reorganize such data,

then they can be fully exploited by agents. Our goal is
to develop a method to extract reliable data from web
pages that intelligent agents can use.

2. PROBLEM DESCRIPTION AND
SUMMARY OF OUR APPROACH
Data on the Web are usually included in HTML
pages, and they do not correspond to pre-established
schema. While a human user can understand the data
in a page, it is impossible to do it by a machine.
Therefore, extracting data from web pages for agents
requires knowledge on both the structure and the
contents of the web pages. There have been mainly
two approaches to deal with this problem in data
extraction from web pages:

• The first approach relies on a natural language

processing (NLP). It is known that current NLP
is not accurate and powerful enough to recognize
the contents of unrestricted web pages.
Therefore, this approach has been used in some
limited domains.

• The second approach tries to associate a web
page with some semantic markers (or tags) when
it is created. For example, one may use
personalized markers. The limitations of such an
approach are well known: the markers are
personalized, they can be hardly generalized [2];

As the original data are structured in different ways, it
is necessary to restructure them according to a
common model that is independent from the
information sources. Our approach is based on this
idea. In particular, we will focus on data extraction
from semi-structured web pages that present
constantly changing data, but with a fixed structure
(e.g. stock exchange cotes). Our approach makes use
of an ontology to model the data to be extracted. The
data in a web page is first converted into XML, then
mapped with the data model. The definition of the
data model and the mapping are done manually. Then
an automatic process is carried out to perform the real
extraction task. The final result is a XML document
that contains a standardized and queriable data set.

3. CHARACTERISTICS OF DATA
SOURCES
Exploitable information sources1 in our context may
be classified into three categories: structured, semi-
structured and unstructured [14].
• An information source is "structured" if one can

query the information using a predefined query
language. Database and knowledge base are
typical examples of structured information
sources.

• An information source is "semi-structured" if it
contains a structure that enables querying,
however without a querying language as in
databases. [12] considers that a source is semi-
structured if the information can be retrieved
using a formal grammar. HTML pages, Web
forms and languages of text description are
examples of semi-structured sources.

• A source is unstructured if it does not have any
form of standard organization and there is no
precise relations among the data.

It is difficult to extract data from unstructured
sources. Extensive NLP will be required, yet the
result will be uncertain. Therefore, we do not aim to
extract information from such sources in this paper.
Rather, we want to extract information from semi-
structured and structured sources. This is not only
because the task is easier, but also because there is a
growing number of sites offering semi-structured and
structured data. If we can successfully extract
information from such sources, a great amount of
useful information can be exploited by agents.

Moreover, we do not intend to deal with all kinds of
data available on the Web. In fact, only a part of the
sources can be submitted to an automatic data
extraction, namely those that provide dynamic data
with regular updating but in a stable structure (e.g.
sites that provide exchange rates).

4. SOME RELATED WORK ON DATA
EXTRACTION
In the literature, one often considers that the process
of data integration is a mediator between a user
requesting information and an information source.
Mediation is thus a process that allows a client to
obtain data without caring about data identity,
storage, structure and access. This is the key to data
integration because it enables a transparent access
and an interface with the sources [14]. Mediation has

1 By "information source" we refer to any system that can

provide any type of data.

been included in almost all the work in data
integration.

A necessary condition for integration is a standard
syntactic and semantic description of the source.

For structured sources, this means to transform the
conceptual schema of the source to another one with
which the source will be accessed. The new structure
should provide an explicit or declarative description.
With a declarative description, one tries to identify
possible ways to query the source. These ways
correspond to different views (or relations)
constructed over the data source [14]. This type of
description has been used in Information Brokers. If
an explicit description is used, then the source
contents are also described and related. Systems that
use this kind of description (e.g. InfoSleuth and
SIMS) usually make use of a domain model that
covers the application area [1] [15].

For semi-structured and unstructured sources, such a
model has to be created by the system. Examples are
the work of [16] on WMA (Web Mining Agent) and
that of [12] (project Ariadne). The model is then
understandable to all the elements in the system.
After the creation of the model, no further
transformation will be necessary for a semi-structured
or unstructured source.

WMA uses its own description language to represent
and identify data inside HTML pages. XML
documents are used as templates for data extraction
and transformation. Extracted data are then stored in
a relational database. One have to learn WMA
description language to be able to use this tool. Also,
software agents must query databases to get data,
however, in our approach, they can extract data
directly from Web pages.
(Question: quelle est la différence de WMA avec
"notre approche"? Il y a l'extraction a partir de
HTML dans les deux cas. Il y a aussi l'acces des
données dans une BD - ou XML dans notre cas, mais
c'est conceptuellement la même chose. Donc, les
différences soulignées ici me semble pas très
convainquantes)

5. CONSTRUCTION OF AN
ONTOLOGY FOR DATA
EXTRACTION

5.1 The need for an ontology
We notice that all the above mentioned work assumes
that all information provided by different sources to
be integrated is covered by a domain model.
However, information is not necessarily presented in

the same way. Due to this fact, information exchange
is not an easy task if different actors (producers or
consumers of information) have not agreed on the
semantic of data. It is then necessary to define an
"alphabet" to ensure a good interpretation and
understanding of exchanged data. The role of the
ontology is to provide a common model that ensures
the minimal requirements for this purpose. In fact,
such a model allows one to construct a common view
of different sources. The elements in the model are
described in a way independent from the particularity
of the data source.

The granularity of the model is dependent of the
application domain. The more an application domain
is restricted, the more it is possible to elaborate a
precise description of the domain with the help of an
ontology, and the more the processing may be
refined. This is achieved mainly with the help of
metadata proper of a domain.

There is no unique definition of ontology in
literature. Each definition is placed in an expected
use and its domain. Below are several definitions we
can find:

[8] [7] defines ontology as follows: "An ontology is
an explicit specification of some topic. It is a formal
and declarative representation which includes the
vocabulary (or names) for referring to the terms in a
specific subject area and the logical statements that
describe what the terms are, how they are related to
each other... Ontologies therefore provide a
vocabulary for representing and communicating
knowledge about some topic …"

In [6], ontology is defined as follows: "A domain
conceptualisation (called ontologies) names and
describes the entities that may exist in that domain
and the relationships among those entities. It
therefore provides a vocabulary for representing and
communicating knowledge about the domain."

Ontology is a way to discompose a world into
objects, and a way to describe these objects. This is a
partial description of the world, depending on the
objectives of the designer and the requirements of the
application or system. For each domain, there may be
a number of ontologies [3]. The use of ontology
differs from an application to another, so are its
design and its formalism of representation.

5.2 Modeling of ontology
Our intended use of ontology is to describe a data
model, rather than knowledge. Therefore, it is not
necessary to include inference and reasoning
mechanism to produce new knowledge at the current

stage. We will use a modeling of ontology close to
object-oriented (OO) modeling. We believe that with
OO paradigm, we can express an ontology in an
explicit way and generate software elements that are
easily exploitable by other applications.

We propose a design of ontology that uses a 3-level
model: basic objects, meta-model and model.

We consider four types of object: entity, attribute,
relation and constraint. These basic objects are used
in the definition of the model, as well as meta-model.
• Entity: Entities describe concepts (elements of

the domain studied) and provide a logical
representation of them.

• Attribute: An attribute corresponds to a property
that characterizes an entity.

• Relation: It describes links between objects in
the model (i.e. entities and attributes).

• Constraint: A constraint is a condition that the
designer imposes on entities, attributes or
relations.

The use of a meta-model allows us to define
interactions between objects previously defined. The
role of meta-model is to provide a way for a designer
to express his own constraints on the basic objects.
The meta-model can thus be used to refine the basic
objects and to define properties on them. The meta-
model layer has been introduced and experimented in
[22] where the goal is to describe axioms of ontology.
We use the same concept here, but in a more general
framework. We use this approach to express specific
design requirements of the user, as in [8] and [22].
Particularly, we will allow a redefinition of the roles
of the elements of the model by the designer,
according to the particular requirements of the
application. Each user can specify his own meta-
model of his ontology.

An example of meta-model that we used to model
ontology is shown in figure 1. We can notice
following facts in this meta-model:
• An entity is a representation of a concept or an

object of real world.
• An attribute is unitary. It cannot be decomposed.
• We include in the meta-model the relations

between entities, and between entities and
attributes. A relation is Binary (entity-entity or
entity-attribute) or Multiple (entity-entities or
entity-attributes). A binary relation between an
entity and an attribute is called Property. It
means that the attribute is a property of the
entity. A binary relation between an entity and
another entity is either a specification relation IS-
A or a composition relation HAS-A. A multiple
relation Properties connects an entity with a set

of attributes. A multiple relation between an
entity and a set of entities is a composition
relation HAS-A.

• We choose to set constraints on relations. They
correspond to elementary requirements in terms
of occurrence number (Cardinality), a precise
sequence of decomposition (Sequence) or a
choice among a given set (Choice). The

constraints Sequence and Choice only apply to
multiple relations to require a sequence or a
choice among entities or attributes. The
Cardinality constraint applies to binary or
multiple relations to define the possible
occurrence numbers for entities and attributes
that form this relation.

Constraint

Sequence

Entity

Abstract

Concrete

Attribute

Unitary attribute

Basic Objects

Meta- model

Property

IS-A

HAS-A

Relation

Binary

Multiple

HAS-A

Properties

Choice

Cardinality

Figure 1. Example of meta-model

Entity

Attribute

Relation, multiple HAS-A : sequence

FINANCE

STOCK sequence

0,1

1,1

Month

Year

DATE

STOCK_VALUE

STOCK_ID

STOCKMARKET

STOCK_DESCRIPTION

EXCHANGE

DATE

SYMBOL

SYMBOL_BASE

VALUE

sequence

Relation, binary : property

0,1 Cardinality

Relation, binaby : IS-A

Relation, multiple HAS-A : choice

NYSE

EURONEXT
Figure 2. Example of a simplified model

In figure 2, we give a simple example of ontology
model in finance area. This model makes use of the
previous meta-model. For example, the entity
STOCK is in relation HAS-A with entities
STOCK_DESCRIPTION, DATE, STOCK_VALUE,
STOCK_ID and STOCKMARKET. Since the
presence of these last entities is necessary to describe
and represent the entity STOCK, the relation HAS-A

which binds the entity STOCK and the set
(STOCK_DESCRIPTION,DATE, STOCK_VALUE,
STOCK_ID and STOCKMARKET) takes the form
of a composition sequence. In practice, this means
that these entities have to be put together. The
presence of an entity (STOCK) depends on the
presence of the all entities that compose it. The
creation of this kind of dependence makes it possible

to control the completeness of data extracted and the
validation of documents. In addition, entity
STOCKMARKET is in relation CHOICE with two
attributes NYSE and EURONEXT. So one of the
attributes has to be selected.

6. TOOLS AND LANGUAGES FOR
MODELING

We used the language SOX (Schema for Oriented-
Object XML), a language of definition of schemas for
XML documents [20] for ontology definition and
data modeling. SOX is developed by Commerce One
to use XML in electronic commerce [4]. A schema
means a set of rules that defines the structure of an
XML document. A DTD (Document Type
Definition) is a special case of language of schema
used to define XML documents. Given a schema, one
can create instances of XML documents that agree
with the schema. The verification is done by a parser.
When using SOX to define an ontology, the data
extracted from Web sites are organized as XML
documents that correspond to the ontology (expressed
as SOX schemas). See appendix 1 for an example of
SOX schema.

The choice of SOX is motivated by the fact that one
can use it to express the requirements of the meta-
model that we defined previously. SOX has been
developed to overcome the insufficiencies of DTD. It
is close to the OO paradigm and introduces concepts
of OO-programming into XML documents. SOX can
also define data types. In addition of the basic data
types, the user can define his own data types. For
example, the user can specify that an attribute can
only take value from a given interval. This is not
possible with DTD. The defined schema ensures
some control of the model and makes the model more
reliable.

We used XDK (XML Developer's Kit) from
Commerce One to parse a SOX document [4].

7. Extraction process
An important step in data integration is to determine
the methods for their access and extraction. If the
retrieval of data from a database is usually easy to do
(e.g. using a query language such as SQL), this
operation is difficult for semi-structured data because
of the lack of data schema. Semi-structured data are
not directly queriable. It is necessary to first construct
a view or a model for the data source by an automatic
tool. In other words, we have to find a way that takes
advantage of the existing organization in the semi-
structured data.

Let us first review some existing data extraction tools
before describing our approach.

7.1 W4F and JEDI : existing tools for
data extraction
W4F (World Wide Web Wrapper Factory) [18] and
JEDI (Java Extraction and Dissemination of
Information) [10] are two tools for data extraction
from web pages. W4F is a development environment
that allows users to construct a Wrapper, to compile
it as a Java component and to include it in
applications. A Wrapper is an interface to access the
contents of web pages. It download HTML
documents from the Internet, corrects them and
extract data from them. Extracted data are connected
with predefined variables [19].

JEDI is a set of tools for generating Wrappers in
order to extract data from textual sources. This may
be applied to web pages as well as other textual files.
The goal of a Wrapper is to indicate how to generate
a representation in XML for the extracted data.
(Commentaire: quelles difference avec la precédente
definition de wrapper? S'agit-il de deux wrappers
differents dans ces deux cas? Si oui, il faudrait dire:
The goal of a Wrapper in JEDI …) Usually, a
Wrapper is a text that contains a set of extraction
transformation instructions, including rules and codes
of control. A rule contains a syntactic constraint
describing the data (character strings) to be extracted.

W4F and JEDI use two different extraction
languages. Users have to learn the languages in order
to write Wrappers. The languages have their own
syntax to define declarations, manipulations of
variables and even scripts. Indeed they are similar to
a programming language. This makes them difficult
to use. On the other hand, it is also difficult to
construct a tool to generate Wrappers, due to the
complexity of the language. Although W4F proposes
a tool to assist the user to write Wrapper, the tool is
only limited to help the user identifying element’s
path. It does not allow an automatic generation of
Wrapper.

Due to these reasons, we do not use this type of
language. We designed a similar, but much simplified
approach (in terms of utilization) that offers
possibilities for future improvements.

7.2 Our extraction method
Our approach does not rely on the identification of
boundaries of character strings within HTML
documents, as is the case in TSIMMIS [9]. Rather,
we use a special processing of HTML pages and an
appropriate querying language.

For each source, we construct a description that
shows how the data can be found and extracted from
a Web page. The edition of the description is done
manually, with the help of an assistance tool.

7.2.1 Characteristics of Web pages
Web pages presenting dynamic data usually have a
fixed structure: data of a given type is shown at a
given place. This is mainly due to the fact that data
shown in the page are usually provided by a database
(or another structured representation) behind the
page. However, the data base itself is not directly
accessible. This is why it is necessary to extract data
from an HTML document. We will exploit this
"property" in our data extraction approach.

The HTML language does not offer any mechanism
for direct querying. However, the W3C proposed a

specification to access the contents of XML
documents based on their hierarchical structure [23].
It is thus interesting to transform HTML documents
into XML in order to take advantage of this
possibility. Although HTML may be considered as an
instance of XML, WEB pages often contain
imperfect and incomplete structures. Navigators often
ignore errors of these pages to allow users to see
HTML documents in most cases. For our conversion
purpose, we have to correct the HTML pages in order
to satisfy the norm of XML.

7.2.2 Transforming HTML to XML
To correct errors in HTML documents, we used
correction tools - HTML TIDY [17] and W4F [19]
(correction and transformation module of W4F).

Correction

DOM

HTML TIDY
& W4F

JAXP

Figure 3. Conversion of an HTML page into XML

FINANCE choice

STOCK

EXCHANGE

DATE

STOCK_VALUE

STOCK_ID

STOCKMARKET

sequence

Figure 4. Mapping with the ontology

Once a web page is transformed into XML, data can
be accessed using the parser DOM (Document
Object Model) [5]. In our case, we used JAXP
(from Sun Microsystems) as a DOM parser. The
access to a data is done by following a path from
the root in a hierarchy. The figure 3 illustrates this
conversion process.

7.3 Mapping of date with ontology
As we explained earlier, our general approach is
based on a description of the domain in form of an
ontology. In fact, the data extracted will be linked
to the corresponding elements of the ontology.

The figure 4 shows the construction of the element
<STOCK>. This latter is part of the element
<FINANCE>. The figure also shows the data in the
Web page that correspond to the elements of the
ontology.

XQL is then used to retrieve data converted into
XML [11]. This language has been proposed to
access the contents of XML documents. It is simple,
concise, and easy to use. Its characteristics would
allow us to build queries graphically.

8. OUR PROTOTYPE
Our prototype is an assistance tool of data
extraction. The extraction follows several steps:
download a web page and convert it into XML,
construct a data model using the ontology, and map
the XML document with the elements in the
ontology. The HTML-XML conversion is
performed using the tools described in 7.2.2. This
step can be done through our graphical interface.

In the construction of data model, the user chooses
the elements of the ontology that correspond to his
interests. The selection of elements by the user tries
to answer the question "what to extract". The
process of mapping and the underlying querying
process answer the question "how to extract".

The figure 5 shows a snapshot of screen during the
step of data model construction (background
window). We can see that … (l'exemple de
STOCK_VALUE). This window is also used for
linking the entities of the ontology with the data at
the source. The ontology elements are displayed in
a table. The right column allows the user to specify
an XQL query to get data corresponding to

specified ontology element. A new window
(foreground window) will be used to generate XQL
query. The lower frame in this window helps user to
construct a query from a DOM tree view of HTML
page (left part). The user navigate the tree to locate
data he is interested in. He edit his XQL query on
converted XML document to select data. The
results are displayed in the right part. We are
working on a new version that can help the user
choosing his data graphically. The user gets data for
each element of the ontology. These data are
combined together in a way soecified in the
ontology.

The result is a description that contains all the
process in form of a specification (description) for a
given source - see an example of a source
description file in appendix 2. The specification
contains, among other things, the names of
entities/attributes, the queries, the transformations

and the information about the structure of the final
result (an XML document, see appendix 3). The
advantage of making a specification is that it is
reusable along time, and by an extraction program
as well as an autonomous agent.

Figure 5. Screen snapshot - construction of data and
linking to elements of the ontology

The figure 6 summarizes the main steps of
extraction. The lower part can be integrated in a
software agent. It is an automatic step since the
agent uses only description (generated before) to
recover the data. Since the extracted data respect
the same ontology, the extraction results from
several sources have the same structure. A
simplistic manner to combine them would be to put
them in a same XML document.

DOM

FINANCE choice

STOCK

EXCHANGE

DATE

STOCK_VALUE

STOCK_ID

STOCKMARKET

sequence

Description of a
source

Extraction (automatic process)

XML document

Mapping and
construction of data

Description of
aother source

Conversion

Conversion

DOM

Ontology

FINANCE choice

STOCK

EXCHANGE

DATE

STOCK_VALUE

STOCK_ID

STOCKMARKET

sequence

Choose elments

DOM tree of
HTML page

Concepts and elements de of
ontology

source description

Figure 6 : Global view of the extraction

9. Autonomous agents using information
extraction and integration
The progress in the development of agent technology
at both theoretical and practical levels offer an
interesting perspective of using agents. Data

extraction and integration are prerequisite to many
operations of agents. The implementation of services
such as travel planning, information retrieval, e-
commerce (buy, sell and negotiation) and stock
exchange all require reliable data sources. Our tool is

a step forward to provide such data to be exploited by
software agents.

A Multi-Agents System – MAS - that uses our
extraction approach is under development in CRIM.
Based on GUEST agents developed in CRIM [13],
this application aims to monitor cotes in stock
exchange. In particular, the agents follow the course
of stock index and inform the user of the evolution of
operations and the trends. The overall architecture is
given in figure 7. See at the end a sample Java source
code used by an agent to get a stock value - appendix
4. The agent uses gives a description source file and a
stock id.

Collector

CISCO
NORTEL
IBM

Collector

$$$

Associated

IBM

$$$

Associated

CISCO

$$$

Associated

NORTEL

...

Supervisor

WEB page

WEB page

Internet

user

Figure 7. Global view of the extraction

10. Conclusions and discussions
In this paper, we dealt with the problem of data
extraction from web pages and their integration in
applications. In particular, our goal is to find a way to
extract reliable data, and to convert them in a
standard form.

The extraction of data consisted in two steps:
converting an HTML page into XML and using XQL
to query XML documents to extract the desired data.
The extraction process is controlled by a specification
file, which describes what elements of a web page to
extract, and how they have to be extracted. As the
user has a tight control on the extraction process, the
extracted data is of high quality, thus can be exploited
by other programs or software agents.

The integration of data is based on the use of an
ontology, which provides a common model for
information sources. The use of an ontology has
greatly simplified our task of extraction and
integration. The most critical point remained is the
definition of an ontology. However, we cannot
imagine an open system that exchanges data without
using a norm of the domain. Even if on cannot
construct a complete ontology, a standard will always
be necessary to play a similar role.

We implemented a prototype that allowed us to
extract some types of data from web pages (in
finance). Although some steps have to be done
manually, namely the construction of a specification
of the extraction process, they are greatly facilitated
by the graphical tool we constructed. The advantage
of such a specification is that, once constructed, it can
be reused for similar applications. Moreover, the
same specification can be exploited by software
agents to get data.

The most useful case of such an extraction process is
on web pages that present dynamic contents, but with
fixed structures. Examples are web pages that provide
stock market exchange prices, money exchange rates,
and so on. If an information site is restructured, the
extraction process is no longer valid. We have to
construct a new extraction process. This means that
we have to monitor the validity of an extraction
process.

However, one has to notice that:

• Many Web pages that provide dynamic data do

not change often the page structure. This means
that even the data shown in a page change, the
extraction process is still valid. Our method aims
to extract data from such information sites.

• Many Web pages are only a presentation page
for data stored in a database. Even if the data
change regularly, the structure remains the same.

• Finally, we extracted several types of data from
web pages. According to our experience, these
pages have not changed their structures during
the whole period of our test (several months).
This confirms the stability of structures of many
information sites, and indicates that our method
can be used in practice for many web sites.

This study shows that it is possible to exploit and use
automatically the data presented in some web pages.
However, some manual preparation is necessary. We
argue that this manual step is always necessary if
one's intention is to extract reliable data to be
exploited by other programs or software agents.
Despite the manual preparation, we believe that this

approach is appropriate for extracting data to be
integrated in software agents.

Acknowledgement
This work has been supported by a scholarship of
AUPELF (Association des Universités Partiellement
ou Entièrement de Langue Française) to Hicham
Snoussi, and a complementary scholarship of the
NSERC (Natural Sciences and Engineering Research
Council of Canada). We would like to take this
opportunity to thank the two organizations.

11. References

[1] Arens, Y., Chee, C. Y., Hsu, C. N. and
Knoblock, C. A., Retrieving and Integrating Data
from Multiple Information Sources, International
Journal of Intelligent and Cooperative Information
Systems. Vol. 2, No. 2, 1993.

[2] Atzeni, P., Mecca, G. and Merialdo, P., To
Weave the Web - In Proceedings of the 23rd
International Conference on Very Large Databases
(VLDB'97), 1997

[3] Bezivin, J., LES NOUVELLES
CONVERGENCES : OBJETS, COMPOSANTS,
MODÈLES ET ONTOLOGIES, JICAA’97, Roscoff
France, Mai 1997.

[4] Commerce One, http://www.commerceone.com/

[5] Document Object Model,http://www.w3.org/DOM/

[6] Farquhar, A., Fikes, R., Pratt, W. and Rice, J.,
Collaborative Ontology Construction for Information
Integration. Knowledge Systems Laboratory,
Department of Computer Science, Technical Report
KSL-95-63, August 1995.

[7] Gruber, T., Ontology definition, http://www-ksl-
svc.stanford.edu:5915/doc/frame-editor/what-is-an-
ontology.html

[8] Gruber, T., Toward principles for the design of
ontologies used for knowledge sharing, The
International Workshop on Formal Ontology, March
1993.

[9] Hammer, J., Garcia-Molina, H., Cho, J., Aranha,
R., and Crespo, A., Extracting Semistructured
Information from the Web". In Proceedings of the
Workshop on Management of Semistructured Data.
Tucson, Arizona, May 1997.

[10] Huck, G., Fankhauser, P., Aberer, K. and
Neuhold, E.J., JEDI: Extracting and Synthesizing
Information from the Web, Conference on
Cooperative Information Systems CoopIS’98, New
York, August, 1998, IEEE Computer Society Press.

[11] Ishikawa, H., Kubota, K. and Kanemasa, Y.,
XQL: A Query Language for XML Data, Query

Languages'98 (QL'98) workshop, Boston,
Massachussets, December 1998.

[12] Knoblock, C. A., Minton, S., Ambite, J. L.,
Ashish, N., Modi, P. J., Muslea, I., Philpot, A. G. and
Tejada, S., Modeling Web Sources for Information
Integration. Proceedings of the National Conference
on Artificial Intelligence, Madison, 1998.

[13] Magnin L., and Alikacem, E. H., GenA :
Multiplatform Generic Agents, MaTa'99 First
International Workshop on Mobile Agents for
Telecommunication Applications, Ottawa, October
1999.

[14] Martin, D. L., Oohama, H., Moran, D. and
Cheyer, A., Information Brokering in an Agent
Architecture, Proceedings of the Second International
Conference on the Practical Application of Intelligent
Agents and Multi-Agent Technology, London, April
1997.

[15] Nodine, M., Fowler, J. and Perry, B., An
Overview of Active Information Gathering in
InfoSleuth, Technical Report, October 1998,
http://www.mcc.com/projects/infosleuth/publications/TR98
/INSL-114-98.ps

[16] OUAHID, H and KARMOUCH, A., An XML-
Based WEB Mining Agent, Proceeding of
MATA’99, Ahmed KARMOUCH and Roger IMPEY
edts., World Scientific, Ottawa, October 1999.

[17] Raggett, D., HTML Tidy,
http://www.w3.org/People/Raggett/tidy/

[18] Sahuguet, A. and Azavant, F., Building light-
weight wrappers for legacy Web data-sources using
W4F, International Conference on Very Large
Databases (VLDB), Edinburgh - Scotland – UK,
September 7 - 10 1999.

[19] Sahuguet, A. and Azavant, F., Looking at the
Web through XML glasses, Conference on
Cooperative Information Systems CoopIS'99,
Edinburgh Scotland, September 2-4 1999.

[20] Schema for Oriented-Object XML,
http://www.commerceone.com/xml/cbl/docs/

[21] Staab, S. and Maedche, A., Axioms are objects,
too— ontology engineering beyond the modeling of
concepts and relations. Technical Report 399, Institute
AIFB, Univ. of Karl-sruhe, 2000.

[22] Staab, S., Erdmann, M. and Maedche, A., An
extensible approach for Modeling Ontologies in
RDF(S), Submitted to the 12th International
Workshop on Knowledge Engineering and
Knowledge Management (EKAW'2000), Juan-les-
Pins, French Riviera, October 2-6, 2000.

[23] W3C, http://www.w3.org

Appendix1. Example of a SOX schema

<?xml version ="1.0"?>
<!DOCTYPE schema SYSTEM "urn:x-commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">
<schema uri = "file:///S:/DataFiles/schemas/n1_0/Finance.sox" soxlang-version = "V0.2.2">
 <elementtype name = "FINANCE">
 <model>
 <sequence>
 <element type = "STOCK" occurs = "?"/>
 <element type = "EXCHANGE" occurs = "?"/>
 </sequence>
 </model>
 </elementtype>
 <elementtype name = "STOCK">
 <model>
 <sequence>
 <element type = "STOCKMARKET"/>
 <element type = "STOCK_ID"/>
 <element type = "STOCK_VALUE"/>
 <element type = "DATE"/>
 </sequence>
 </model>
 </elementtype>
 <elementtype name = "STOCKMARKET">
 <model>
 <string/>
 </model>
 </elementtype>
 <elementtype name = "STOCK_ID">
 <model>
 <string/>
 </model>
 </elementtype>
 <elementtype name = "STOCK_VALUE">
 <model>
 <string datatype = "int"/>
 </model>
 </elementtype>
 <elementtype name = "DATE">
 <model>
 < string/>
 </model>
 </elementtype>
 …
</schema>

Appendix2. Example of a description source file

<?xml version="1.0" encoding="UTF-8"?>
<SOURCE>

<NAME>Stocks</NAME>
<URL>http://finance.yahoo.com/q?s=AOL+YHOO+IBM+CSCO+LU+EBAY+TXN+NT+NOK&d=v1</URL>
<ONTOLOGYFILE>file:///S:/DataFiles/schemas/n1_0/Finance.sox</ONTOLOGYFILE>
<ITEMS>

<ITEM>
<INDEX>0</INDEX>
<NAMEITEM>FINANCE</NAMEITEM>
<TYPE>element</TYPE>

<ITEM>
<INDEX>1</INDEX>
<NAMEITEM>STOCK</NAMEITEM>
<TYPE>element</TYPE>

<ITEM>
<NAMEITEM>DATE</NAMEITEM>
<TYPE>Element</TYPE>
<INDEX>2</INDEX>
<QUERY>//body/center/p[0]</QUERY>

</ITEM>
<ITEM>

<NAMEITEM>STOCK_VALUE </NAMEITEM>
<TYPE>Element</TYPE>
<INDEX>3</INDEX>
<QUERY>//body/center/table/tr/td/table/tr[index()ge1]/td/b/textNode() [0]</QUERY>

</ITEM>
<ITEM>

<NAMEITEM>STOCK_ID</NAMEITEM>
<TYPE>Element</TYPE>
<INDEX>4</INDEX>
<QUERY>//center/table/tr/td/table/tr[index()ge1]/td/a[@href$contains$'/q?']</QUERY>

</ITEM>
<ITEM>

<NAMEITEM>STOCKMARKET </NAMEITEM>
<TYPE>Element</TYPE>
<INDEX>5</INDEX>
<QUERY>//body/center/p[0]</QUERY>

</ITEM>
</ITEM>

</ITEM>
</ITEMS>

</SOURCE>

Appendix3. XML document of extracted data

<?xml version="1.0" encoding="UTF-8"?>
<RESULTS>
 <FINANCE>
 <STOCK>
 <DATE>Thursday, March 29 2001 12:24pm ET </DATE>
 <STOCK_VALUE>40.56</STOCK_VALUE>
 <STOCK_ID>AOL</STOCK_ID>
 <STOCKMARKET> U.S. Markets</STOCKMARKET>
 </STOCK>
 </FINANCE>
 <FINANCE>
 <STOCK>
 <DATE>Thursday, March 29 2001 12:24pm ET </DATE>
 <STOCK_VALUE>14 </STOCK_VALUE>
 <STOCK_ID>YHOO</STOCK_ID>
 <STOCKMARKET> U.S. Markets</STOCKMARKET>
 </STOCK>
 </FINANCE>
 <FINANCE>
 <STOCK>
 <DATE>Thursday, March 29 2001 12:24pm ET </DATE>
 <STOCK_VALUE>95.38</STOCK_VALUE>
 <STOCK_ID>IBM</STOCK_ID>
 <STOCKMARKET> U.S. Markets</STOCKMARKET>
 </STOCK>
 </FINANCE>

…
</RESULTS>

Appendix4. Sample Java source code used by an agent

{

 …
 file = "http://www.crim.ca/~hsnoussi/sources/StockMarket.xml";
 xmlDocument = StockData.extract(file);
 stock_ID = "IBM";
 value = StockData.getValue(xmlDocument, stock_ID)
 return value;
}

