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Abstract

Diversified query expansion (DQE) based approaches aim to
select a set of expansion terms with less redundancy among
them while covering as many query aspects as possible. Re-
cently they have experimentally demonstrate their effective-
ness for the task of search result diversification. One chal-
lenge faced by existing DQE approaches is to ensure the as-
pect coverage. In this paper, we propose a novel method for
DQE, called compact aspect embedding, which exploits trace
norm regularization to learn a low rank vector space for the
query, with each eigenvector of the learnt vector space repre-
senting an aspect, and the absolute value of its corresponding
eigenvalue representing the association strength of that aspect
to the query. Meanwhile, each expansion term is mapped into
the vector space as well. Based on this novel representation
of the query aspects and expansion terms, we design a greedy
selection strategy to choose a set of expansion terms to ex-
plicitly cover all possible aspects of the query. We test our
method on several TREC diversification data sets, and show
that our method significantly outperforms the state-of-the-art
search result diversification approaches.

Introduction
The short and ambiguous nature of the Web queries
(Agrawal et al. 2009) represents a main challenge for a
search engine to understand the user intent. Search re-
sult diversification (SRD) has been proposed to tackle this
challenge by returning a list of relevant results covering as
many aspects of the query as possible. SRD can be im-
plemented by selecting or re-ranking the initial search re-
sults, taking into account the diversity among them (Car-
bonell and Goldstein 1998; Zhai, Cohen, and Lafferty 2003;
Zhu et al. 2007). Some recent studies (Bouchoucha, He, and
Nie 2013) find that the initial search results may not be di-
verse enough to represent all the aspects of the query. There-
fore, a pre-retrieval query expansion can be conducted to
expand the query in different directions, which motivates re-
cent studies on diversified query expansion (DQE) for SRD
(Bouchoucha, He, and Nie 2013; Bouchoucha, Liu, and
Nie 2014). Experimentally, DQE based approaches, e.g.,
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the one presented by Bouchoucha et al. (2013), outper-
form the state-of-the-art existing SRD methods on TREC
data, including those based on pseudo-relevance feedback
(PRF)(Agrawal et al. 2009; Santos, Macdonald, and Ounis
2010).

A typical DQE approach consists of three steps. It first
generates a set of expansion term candidates using one
or several external resources, e.g., ConceptNet (Speer and
Havasi 2012), Wikipedia, query logs, or initial feedback
documents. Then it selects a set of diverse expansion terms
from the candidate expansion terms, following some princi-
pled method. Finally, it combines expansion terms and the
original query into one extended query (in which each term
has a weight) and uses that query to obtain a set of diversi-
fied search results. As aspects of a query are not explicitly
specified in a realistic situation, existing DQE approaches
assume an aspect of the query can be represented by one or
several expansion terms. Their focus is then on removing the
redundancy among expansion terms, while no attention has
been paid on how well the selected terms can cover all the
query aspects. For example, in the work of Bouchoucha et
al. (2013), they define two functions to measure the similari-
ties between two expansion terms and between an expansion
term and the query, respectively, and based on the two sim-
ilarity functions they obtain diversified expansion terms by
following the Maximal Marginal Relevance (MMR) (Car-
bonell and Goldstein 1998) principle. Notice that their ap-
proach cannot guarantee that the expansion terms selected
cover all aspects of the query. Indeed, we have observed
that some expansion terms are ignored, although they cover
some new aspects of the query. This is because they cover
some aspects already covered by the expansion terms al-
ready selected.

We propose a novel method called compact aspect em-
bedding that explicitly extracts query aspects. In particu-
lar, we represent each expansion term with a vector, and use
the span of the expansion term vectors to represent the as-
pect space of the query. Each vector of a basis of the as-
pect space could be considered as an aspect. Since a query
often has a limited number of aspects, we are motivated
to learn a compact vector space - a vector space of low
rank, which is achieved by using trace norm regularization
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(Ji and Ye 2009). Observing that the expansion terms of a
query may be organized into several independent groups 1,
and each group may have a different degree of relevance to
the original query, we choose one special basis consisting
of the eigenvectors 2: each eigenvector denotes an aspect,
called aspect vector hereafter, and the absolute value of the
corresponding eigenvalue is considered as the association
strength of the aspect with the query, called aspect weight
hereafter.

Based on this vector representation for an expansion term
and an aspect, we design the following greedy selection
strategy to obtain a set of expansion terms that tries to ex-
plicitly cover all aspects: we process the aspect vectors by
their weights in descending order by selecting several new
expansion terms (not selected before) that are not similar to
the expansion terms already selected and are also close to
the aspect vector under consideration in the aspect space.
Note that, compared with latent Dirichlet allocation (LDA)
(Blei, Ng, and Jordan 2003), which also does not need to
know the explicit sub topics of the given query, our method
exploits supervised learning to learn the aspect vectors and
expansion term vectors, and does not enforce a probabilistic
interpretation of the learnt vectors (which will be explained
in Section 3).

We evaluated our approach using TREC 2009, 2010 and
2011 Web tracks. The experimental results confirm that
our method yields better results than the previous DQE ap-
proaches and other typical SRD approaches.

We make several contributions in this paper. 1) we pro-
pose to use a low rank vector space to represent the potential
intents of a query; 2) we present a greedy expansion term se-
lection strategy based on the learnt aspect vector space aim-
ing to cover all aspects; and 3) we experimentally show the
effectiveness of our method on TREC 2009, 2010 and 2011
Web tracks.

The remainder of this paper is organized as follows. Sec-
tion 2 overviews related work. Section 3 presents details of
our approach. Section 4 describes our experiments. Finally
in Section 5, we conclude with future work.

Related Work
Implicit SRD. Existing SRD methods can be roughly classi-
fied into two categories: implicit SRD and explicit SRD. An
implicit SRD approach considers the relations among doc-
uments to generate ranked lists that convey both relevant
and diverse information about a query. Maximal Marginal
Relevance (MMR) (Carbonell and Goldstein 1998) is an
early example of implicit SRD, which selects documents
that maximize relevance and reduce redundancy to higher
ranked documents. Zhai et al. propose a probabilistic ver-
sion of MMR (2003). Zhu et al. approached the diversi-

1This is verified by a lot of clustering based approaches to SRD
(He, Meij, and de Rijke 2011; Nguyen and Hiemstra 2012).

2The rank of a matrix equals to the number of non-zero eigen-
value of that matrix. For a real matrix, which is the case in our
study, eigenvectors corresponding to different non-zero eigenval-
ues are linearly independent to each other. For each non-zero
eigenvalue, we choose one eigenvector.

fication problem as an absorbing Markov chain using ran-
dom walks to prevent redundant items from receiving a high
rank by turning ranked items into absorbing states (2007),
which will decrease the importance of items that are similar
to them, thereby promoting items that are dissimilar to them.
Explicit SRD. An explicit SRD approach uses a set of terms,
manually defined or automatically extracted, to explicitly
represent the aspects of the query, and tries to cover as much
as possible the different aspects of the query. Several re-
sources have been exploited to define or extract query as-
pects. For example, the explicit Query Aspect Diversifica-
tion framework (xQuAD) (Santos, Macdonald, and Ounis
2010) extracts query reformulations from three major Web
search engines to represent query aspects. A document is
re-ranked according to how it can cover the uncovered as-
pects. Dang and Croft (2012) use the official sub-topics
manually identified by TREC assessors and query sugges-
tions provided by a commercial search engine as aspects,
and introduce PM-2, a two stage framework which first de-
termines the aspect that best maintains the overall propor-
tionality for each position in the result ranking list, and then
selects the best document on that aspect. In their recent
study (2013), Dang and Croft extend PM-2 by using the
topic terms extracted with an algorithm for document sum-
marization from feedback documents as query aspects, with
the hope that the expanded query can cover more query as-
pects. Dou et al. (2011) propose a multi-dimensional SRD
framework that exploits four data sources, including anchor
texts, query logs, search result clusters and web sites to mine
query subtopics on multiple dimensions. Such subtopics are
used to diversify documents by considering both their rele-
vance and their novelty, following the MMR principle (Car-
bonell and Goldstein 1998). He et al. (2012) propose the
combination of click logs, anchor text and web n-grams to
generate related terms for query expansion. They then use
a graph to organize these terms, and compute the similar-
ities between two suggested terms by using random walk.
They experimentally show that with suggested queries, their
approach improves diversification performance. Note that,
their approach selects expansion terms according to their
similarity to the query terms, and does not consider the pos-
sible redundancy among expansion terms.
DQE. Diversified query expansion (DQE) represents recent
efforts in explicit SRD, with the direct goal of obtaining a
set of diversified expansion terms. Note that, different from
general query expansion, DQE aims at improving search re-
sult diversification: not only to cover more relevant docu-
ments, but also to cover more diversified documents. There-
fore, the diversity of the expansion terms should be explic-
itly considered. Several approaches have been proposed for
DQE. Vargas et al. (2013) propose the first DQE approach,
which employs xQuAD to select diverse expansion terms
from feedback documents. Bouchoucha et al. (2013) use
an external resource - ConceptNet to get a set of diverse ex-
pansion terms. In their recent work (2014), they present a
general framework that integrates multiple resources to gen-
erate diverse expansion terms according to a principle simi-
lar to MMR (Carbonell and Goldstein 1998). Although term
dissimilarity is a criterion used in the selection, there is no
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explicit representation of query aspects. We argue that an
explicit representation of query aspects may be important
for DQE: one would be able to estimate not only if two
expansion terms are dissimilar, but also if they are related
to different aspects. This latter factor is important for the
generation of diversified queries covering all the query as-
pects. To the best of our knowledge, this work is the first
one to explicitly represent the aspects of the query using a
low rank vector space. Based on this representation we fur-
ther present a greedy selection strategy to choose a set of
diverse terms that cover all the aspects of the query. This is
in sharp contrast with the existing DQE approaches, which
employe terms or topical models to represent the aspects of
the query.
Embedding. Embedding is an abstract representation cre-
ated to represent latent semantics. With embedding, any
object (e.g. a term, an aspect, etc.) can be mapped to a
vector in the embedding space, thus has a latent semantic
representation. Recently, the idea of embedding has been
successful exploited for a wide range of tasks. For ex-
ample, Koren et al. exploit matrix factorization technolo-
gies to map users and movies to the same vector space,
and win Netflix Prize competition (2009). Huang et al.
use a multi-layer neural network to learn vector represen-
tations for the document using click-through data, which
outperforms other latent semantic models for the Web doc-
ument ranking task (2013). He et al. use LDA to ob-
tain a vector for each document, which models the distri-
bution of latent topics of that document (2012). In this
work, we use trace norm regularization (Ji and Ye 2009;
Cai, Candès, and Shen 2010) to learn a low rank vector
space to represent the aspects of the query, which encodes
our prior knowledge that a query often has a limited number
of aspects.

Compact Aspect Embedding
Overview. Our method is an instance of DQE, and con-
sists of three steps. Given a query, we first generate ex-
pansion terms using some external resource, and define a
function to measure the similarity between two expansion
terms, following the studies of Bouchoucha et al. (2013;
2014). In our work, we use search logs, which has been
widely adopted by recent SRD related studies. Then we
map expansion terms into a low-rank vector space. With the
learnt vector space, we select an eigenvector (aspect vector)
for each non-zero eigenvalue to represent an aspect of the
query in the vector space. Accordingly, we use the absolute
value of the eigenvalue (aspect weight) to model the associa-
tions strength of the corresponding aspect with the query. To
ensure that the expansion terms selected are relevant to the
query and cover all the aspects of the query, we design the
following greedy selection strategy: we first order the aspect
vectors in descent order by their weights; and then for each
aspect vector we select several expansion terms that cover
this aspect while not being redundant with already selected
expansion terms. Following (Dang and Croft 2012), we con-
sider the proportionality of an aspect, and make the number
of selected expansion terms for an aspect proportional to the
weight of the aspect. Finally, the selected expansion terms

and the original query terms are combined to formulate a
new query, which is submitted to a retrieval system, e.g., In-
dri 3. We take the returned search results as the diversified
search results, following Bouchoucha et al. (2013). It is the
second step that makes our method different from other re-
lated approaches, which we now discuss in detail.
Embedding Framework. Similar to latent Dirichlet allo-
cation (LDA) (Blei, Ng, and Jordan 2003), our embedding
framework does not need to know the explicit sub topics of
the given query, and attempts to learn a vector for each ex-
pansion term. Furthermore, it uses a vector to represent an
aspect of the query as well, and all the aspect vectors span
a low-rank vector space, in which we can consistently mea-
sure the distance between two expansion terms and the dis-
tance between an expansion term and an aspect. This is dif-
ferent from LDA, in which an aspect is modelled as a topic,
i.e., one dimension of a topical vector. Another noticeable
difference is that our embedding framework uses supervised
learning to learn the low-rank aspect space, by enforcing that
similar expansion terms should be close in the aspect space.

We introduce the following notations before we formally
define our embedding framework: q, the given query; E, the
expansion terms related to q; e ∈ E, an expansion term;
~e, the column vector corresponding to expansion term e; E,
the matrix with each column representing an expansion term
vector, which also denotes the vector space we want to learn;
|| · ||F , the Frobenius-norm of a matrix (resp. a vector), de-
fined as the sum of the absolute squares of all elements of
the matrix (resp. a vector); || · ||∗, the trace norm of a ma-
trix, defined as the sum of the singular values of the matrix;
ET , the transpose of matrix E; S = (sij), the similarity ma-
trix, where sij denotes the similarity between two expansion
terms ei and ej (which will be explained soon).

With the above notations, we define the following opti-
mization problem:

min
1

2
||ET E− S||2F + η||E||∗

subject to: ||~e||2F = 1,∀e ∈ E.
(1)

Formula 1 clearly shows that we are seeking for an as-
pect vector space E with two desirable characteristics: 1)
similar expansion terms should be close in the aspect vec-
tor space; and 2) the vector space should have a low rank,
which is implemented by enforcing the trace norm regu-
larization. η controls the trade-off. Note that directly ob-
taining a low rank matrix in general is NP-hard due to the
combinatorial nature of the rank function (Ji and Ye 2009).
The trace norm is a commonly-used convex relaxation of
the rank function, since it is the convex envelope of the
rank function over the unit ball of spectral norm. Indeed,
under certain conditions, the low rank solution can be re-
covered exactly via minimizing the trace norm (Recht, Xu,
and Hassibi 2008). In practice, the trace norm relaxation
has been shown to yield low-rank solutions and it has been
used widely in many scenarios (Tomioka and Aihara 2007;
Ma, Goldfarb, and Chen 2011).

3http://www.lemurproject.org/indri.php
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We use the singular value thresholding algorithm (Cai,
Candès, and Shen 2010) to solve this problem . This algo-
rithm is easy to implement, and is effective both in terms of
computational cost and storage requirement when the mini-
mum nuclear-norm solution is also the lowest-rank solution.

Once we obtain E, we get a vector for each expansion
term e ∈ E. We further compute the eigenvalues σi, i =
1, 2, · · · , N ,where N is the rank of E. For each eigenvalue
σi, we choose one normalized eigenvector, denoted by ~αi,
where ||~αi||2F = 1 . Note that {~αi, i = 1, 2, · · · , N } form
a basis of E. Therefore, we use ~αi to represent the ith as-
pect, and use |σi| to represent its weight, which indicates to
which degree the aspect is related to the query q. Hereafter,
we assume ~αi, i = 1, 2, · · · , N are in descending order by
their weights.
Expansion Terms Generation. We use query logs to ex-
tract expansion terms. We consider two kinds of queries as
expansion terms: 1) the queries that share the same click-
through data with q, and 2) the reformulated queries of q
that appear in a user session within a time window of 30
minutes. For a query, we select at most K (experimentally
set to 100) expansion terms.

For each pair of expansion terms ei and ej , we compute
their similarity, i.e., sij , using the Jaccard distance by con-
sidering the number of the expansion terms that include both
ei and ej :

sij =
|Qi ∩Qj |
|Qi ∪Qj |

(2)

where Qi = {e|e ∈ E, ei ∈ q} (resp. Qj = {e|e ∈ E, ej ∈
q}) is the subset of E that includes ei (resp. ej).
Expansion Term Diversification. Expansion terms gener-
ated from query logs often include terms that are similar to
each other. Therefore, we design Algorithm 1, a greedy se-
lection strategy, to obtain a global list of diversified expan-
sion terms, with the goal of removing redundancy among
expansion terms and covering as many aspects of the orig-
inal query as possible. For each aspect vector, we decide
the number of expansion terms to be selected for the aspect,
following Formula 3:

Ki = d2 ·N ·
|σi|∑

j=1,··· ,N
|σj |
e (3)

where Ki denotes the number of expansion terms we will
choose for the ith aspect. This formula ensures two things:
1) an aspect with higher weights may have more expan-
sion terms; and 2) each aspect will have at least one ex-
pansion term. For each aspect under consideration, a Max-
imal Marginal Relevance-based Expansion (MMRE) (Bou-
choucha, Liu, and Nie 2014) is performed to choose an ex-
pansion term e∗ that covers that aspect and is not similar to
the expansion terms already selected, as defined in Formula
4. The selection process stops if no expansion term candi-
date is available or for every aspect the required number of
expansion terms have been selected.

e∗ = argmax
e∈E−ES

{β · sim(~e, ~αi)− (1− β) · max
~e′∈ES

sim(~e,~e
′
)}

(4)

Algorithm 1 Query Term Diversification.
Require: Expansion terms E; aspect vector space E; aspect vec-

tors ~αi, i = 1, 2, · · · , N .

1: Initialize ES, the set of selected expansion terms, to empty:
ES = ∅.

2: Initialize ki, the expansion terms already selected for the ith

aspect, to 0: ki = 0, i = 1, · · · , N .
3: while E 6= ∅ and kj < Kj , j = 1, · · · , N do
4: for i = 1, 2, · · · , L do
5: if E == ∅ then
6: break
7: end if
8: if ki > Ki then
9: continue

10: end if
11: Select e∗ according to Formula 4.
12: ES = ES ∪ {e∗}; E = E − {e∗}.
13: ki = ki + 1
14: end for
15: end while
16: return ES

In Formula 4, ES represents the expansion terms already
selected; β ∈ [0, 1] controls the trade-off between relevance
and redundancy of the expansion terms, which is experi-
mentally set to 0.5; sim(~e, ~αi) denotes the similarity be-
tween an expansion term and the aspect under consideration;
sim(~e,~e

′
) is the similarity between two expansion terms.

Both sim(~e,~e
′
) and sim(~e, ~αi) are computed as the dot

product of the corresponding vectors, as defined in Formula
5 and 6, respectively:

sim(~ei, ~ej) = ~eTi · ~ej (5)

sim(~e, ~α) = ~eT · ~α (6)

where ~eT (~eTi ) means the transpose of ~e (~ei). Note that the
above two similarities fall into the scope of [−1, 1], since
expansion term vectors and aspect vectors are normalized to
1 (in terms of Frobenius-norm).
Expansion Terms Generation. Once we get ES, a set of
diversified expansion terms, we combine them with the orig-
inal query to form a new query, in which each expansion
term has a weight reflecting how relevant it is to the original
query:

w(e)←
∑

i=1,2,··· ,N
|σi| · ~eT · ~αi (7)

w(e)← w(e)∑
e′∈ES w(e

′)
(8)

Formula 7 sums up the relevance of the term to all the aspect
vectors and also considers the weights of the aspect vectors.
The weight of an expansion term w.r.t. the new query is
normalized to [0, 1] using Formula 8. Finally, we submit the
composed query to Indri, and obtain a set of search results,
which is considered as the diversified search results.
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Experiments
Data Preparation. We conduct experiments on the
ClueWeb09 (category B) dataset, which has 50,220,423 doc-
uments (about 1.5 TB), and use the test queries from TREC
2009, 2010 and 2011 Web tracks. We use the log data of Mi-
crosoft Live Search 2006 as the resource to generate expan-
sion terms, which spans over one month (starting from May
1st) consisting of almost 14.9M queries shared between
around 5.4M user sessions. Since spam filtering is knowm
to be an important component of Web retrieval, we have ap-
plied the publicly available Waterloo spam ranking4 to the
ClueWeb09 (B) collection, and we consider a percentile of
60% which is shown to be optimal for the ClueWeb dataset.
Parameter Setting. We build a development data set con-
sisting of 10 randomly selected queries (from TREC 2009,
2010 and 2011 Web tracks) to fine tune parameters, and ob-
tain the following configuration: β, the trade-off parameter
of MMRE defined in Formula 4 is set to 0.5; η, the param-
eter that controls the trade-off between Frobenius-norm loss
and trace norm loss, is set to 1; the number of dimensions
of an expansion term vector (N ) is fixed to 30; K, the num-
ber of expansion term candidates, is set to 100; the param-
eter that controls the trade-off between relevance and non-
redundancy in MMREQ (Bouchoucha, Liu, and Nie 2014)
is set to 0.6. Notice that the results that we report later for
MMREQ are calculated on 15 expansion terms (excluding
the original query terms). Finally, before running our sys-
tem, one should initialize each column vector ~e. In our ex-
periments, we set each dimension to 1√

N
which ensures that

||~e||2F = 1, which does not promote any aspect to another.
We have found that this setting works well in practice and
makes our framework converge to a low-rank vector space
for the query.
Reference Systems. For comparison purpose, we consider
the following reference systems: BL, the basic retrieval sys-
tem that is built with Indri and is based on a query gener-
ative language model with Dirichlet smoothing (µ=2000),
Krovetz stemmer, and stopwords removal; MMR, the sys-
tem based on the re-ranking of search results (with λ = 0.6)
(Carbonell and Goldstein 1998); PM-2, a term-level search
result diversification system (Dang and Croft 2012) that con-
siders aspect popularity (Note that, in this work, we didn’t
implemented PM-2 and we simply report the results from
the paper of (Dang and Croft 2013)); xQuAD, a probabilistic
framework for search result diversification, which explicitly
models an ambiguous query as a set of sub-queries (San-
tos, Macdonald, and Ounis 2010); MMREQ, a MMRE based
system, which uses query logs to get diversified expansion
terms (Bouchoucha, Liu, and Nie 2014).
Evaluation Metrics. We consider the following offi-
cial measures as performance metrics: nDCG and ERR
(Chapelle et al. 2009) for adhoc relevance performance,
α-nDCG (Clarke et al. 2008) (in our experiments, α=0.5),
ERR-IA (Chapelle et al. 2009), NRBP (Clarke, Kolla, and
Vechtomova 2009) and Prec-IA (Agrawal et al. 2009) for
diversity measure, and S-recall (Zhai, Cohen, and Lafferty
2003) to measure the ratio of covered subtopics for a given

4https://plg.uwaterloo.ca/ gvcormac/clueweb09spam

query.
Results. We report the performance numbers in Table 1 and
Table 2 on queries of TREC 2009, 2010, 2011 and their com-
bination, respectively. From Table 1 and Table 2 5, we ob-
serve that our method consistently outperforms all the other
systems in terms of both relevance and diversity on all data
sets, and the improvements are statistically significant for all
the measures. This observation confirms the overall advan-
tage of our proposed method. In particular, in Table 2, com-
paring our approach with other state-of-the-art approaches
on the 144 queries used in the previous experiments (Dang
and Croft 2013), we can see that our approach outperforms
PM-2 and xQuAD by large margins.

From Table 1, we can see that our method performs sig-
nificantly better than MMREQ, a typical DQE approach, on
all the measures. This is a clear indication of the advantage
to use low-rank aspect vector space to represent the possi-
ble intents of a query. We can analyze one particular query
“rice” in TREC 2010 Web track 6, which is a typical example
that shows the general trends. This query is ambiguous and
has five different subtopics. For this query, MMREQ outputs
the following expansion terms: rice, recipe, diet, university,
dish, condoleezza, baseball, cooker, sushi, resume, chinese,
chicken, pictures, houston, pudding, facts; in contrast our
method yields less expansion terms which however covers
more aspects of the query: rice, recipe, sushi, calories, con-
doleezza, mexican, nutrition, university, biography, chinese,
facts, pudding. We make several observations here. First,
some expansion terms like dish, pictures, cooker and hous-
ton are dropped by our method. Such terms with general
meanings do not clearly correspond to any subtopic of the
query, or could be related to several aspects. In the aspect
vector space, such terms represent concrete instances of the
semantic category denoted by the terms, but are not close
to either of them. In contrast, other terms like mexican and
biography that are not considered by MMREQ were never-
theless selected by our method, because they are more spe-
cific terms that clearly correspond to narrow subtopics of the
query. Second, we observe that our system does not select
some terms such as baseball and pictures that are less impor-
tant i.e. they don’t match any of the manual (ground-truth)
query subtopics. This could be explained by the fact that our
system not only selects good expansion terms but also en-
sures a high coverage of the ground-truth query subtopics.
Interestingly, one can see that the fourth subtopic of the
query was not covered by MMREQ but our system covers
it through terms calories, nutrition and facts. Third, we find
that our method successfully keeps several expansion terms
like recipe, condoleezza and university which represent one
or several aspects of the query. This ensures a high coverage
of the query subtopics despite the fact that some subtopic
(subtopic 5) is still missing from the top selected expansion
terms. This example clearly shows that our method can ef-
ficiently identify a set of expansion terms with less redun-
dancy while covering more aspects of the query, largely ow-

5Since we don’t have the results of PM-2 for each query, we
can not run statistical significance test for PM-2.

6http://trec.nist.gov/data/web/10/wt2010-topics.xml
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Queries Method nDCG@20 ERR@20 α-nDCG@20 ERR-IA@20 NRBP Prec-IA@20 S-recall@20
BL 0.312 0.125 0.297 0.195 0.162 0.111 0.430

TREC MMR 0.310 0.119 0.296 0.191 0.161 0.120 0.442*
2009 MMREQ 0.346*- 0.138*- 0.345*- 0.210*- 0.190*- 0.136*- 0.489*-

Ours (η = 0) 0.384*-+ 0.161*-+ 0.392*-+ 0.255*-+ 0.228*-+ 0.167*-+ 0.585*-+
Ours (η = 1) 0.419*-+§ 0.175*-+ 0.417*-+§ 0.273*-+§ 0.246*-+§ 0.185*-+§ 0.639*-+§
BL 0.182 0.139 0.320 0.203 0.163 0.170 0.543

TREC MMR 0.191* 0.142 0.329 0.213* 0.170 0.172 0.562*
2010 MMREQ 0.217*- 0.155*- 0.361*- 0.220*- 0.200*- 0.203*- 0.573*-

Ours (η = 0) 0.253*-+ 0.179*-+ 0.418*-+ 0.277*-+ 0.245*-+ 0.256*-+ 0.617*-+
Ours (η = 1) 0.270*-+§ 0.194*-+§ 0.442*-+§ 0.298*-+§ 0.266*-+§ 0.270*-+§ 0.659*-+§
BL 0.298 0.139 0.542 0.440 0.399 0.240 0.764

TREC MMR 0.304 0.141 0.544 0.433 0.397 0.250 0.741
2011 MMREQ 0.351*- 0.149*- 0.600*- 0.478*- 0.428*- 0.261*- 0.776*-

Ours (η = 0) 0.387*-+ 0.166*-+ 0.658*-+ 0.572*-+ 0.488*-+ 0.307*-+ 0.824*-+
Ours (η = 1) 0.396*-+ 0.182*-+§ 0.673*-+§ 0.594*-+§ 0.509*-+§ 0.322*-+§ 0.851*-+§

Table 1: Experimental results of different methods on TREC Web tracks query sets. *, -, +, § indicate significant improvement (p < 0.05 in
T-test) over BL, MMR, MMREQ, and Ours (η = 0), respectively.

Queries Method nDCG@20 ERR@20 α-nDCG@20 ERR-IA@20 NRBP Prec-IA@20 S-recall@20
TREC BL 0.267 0.133 0.385 0.279 0.241 0.179 0.578
2009 + MMR 0.263 0.131 0.387 0.278 0.240 0.179 0.579
2010 + PM-2 0.305 0.154 0.464 0.344 0.309 0.206 0.627
2011 xQuAD 0.305*- 0.152*- 0.437*- 0.314*- 0.278*- 0.207*-§ 0.617*-
(144 MMREQ 0.303*- 0.149*- 0.433*- 0.308*- 0.271*- 0.198*- 0.611*-

queries) Ours (η = 0) 0.334*-+ 0.162*-+ 0.481*-+ 0.366*-+ 0.324*-+ 0.239*-+ 0.682*-+
Ours (η = 1) 0.359*-+§⊗ 0.180*-+§⊗ 0.505*-+§⊗ 0.379*-+§⊗ 0.333*-+§⊗ 0.251*-+§⊗ 0.724*-+§⊗

Table 2: Comparison of our method with existing SRD methods. *, -, +, §, and ⊗ indicate significant improvement (p < 0.05 in T-test) over
BL, MMR, xQuAD, MMREQ, and Ours (η = 0) , respectively.

ing to its low-rank vector space representation of the aspects
of the query. Finally, the trace norm regularization is one
of the key points of this work. To understand how the trace
element impacts on our method, we set η = 0 in Formula
1 and report their results. From Table 1 and Table 2, it is
clear to see that the difference between our method when
using trace norm (η = 1) is statistically significant compared
to our method when the trace element is ignored (η = 0).
This highlights the important role of the trace norm which
successfully selects good expansion terms, which improves
search results in terms of both relevance and diversity.

Discussions. In this work, we set N , the number of dimen-
sions of an expansion term vector, to 30, independent of the
query under consideration. It is interesting to check if our
method is sensitive to the setting of N . To do this, we vary
N = 5, 10, 20, 30, 50, 60 and compare the performance of
our system on the development data set. The results are
plotted in Figure 1. From N = 5 to 10 to 20, we observe
that the performance of our system drastically increases on
both relevance and diversity measures. This is because a
low value of N does not usually ensures the coverage of
all the query aspects; the larger N is, the better our system
performs. N = 30 corresponds to the best setting which
yields the highest scores on all the measures. Interestingly,
we find that when N increases (N = 50 and N = 60), the
performance of our system is almost the same as the best
achieved when N = 30. This suggests that our system is
not sensitive to N when it is big enough to cover all the
aspects of the query. This is indeed one advantage of our
system: even though the value of N increases, our frame-

work converges to a vector space that yields similar expan-
sion terms. On the other hand, if the value of N is small, its
performance degrades and even underperforms BL (case of
N = 5) when N becomes significantly smaller than the op-
timal value. Since a larger N introduces more computations
to resolve the optimization problem defined in Formula 1,
ideally given a query, we should set N to the corresponding
optimal value. However the optimal value is not available in
practice. In this work, we deal with this problem by fixing
N to an arbitrary number with the hope that it is not less
than the maximum optimal value w.r.t. all the queries. Note
that this is another advantage of our method over LDA, in
which we have to carefully pre-decide the number of top-
ics. We use a low-rank vector space to represent all the
aspects of a query. It is still not clear how the manually
annotated sub topics can be aligned with the learnt aspect
vectors. It is also meaningful to study how to use this repre-
sentation to directly generate diverse search results without
a middle step of generating diverse query expansion terms,
e.g., mapping a document into the same vector space and
choosing a set of diversified documents by running an al-
gorithm similar to Algorithm 1. In this work, we use one
resource to generate expansion term candidates. Several re-
cent studies show that using multiple resources can yield
better results for SRD (Bouchoucha, Liu, and Nie 2014;
He, Hollink, and de Vries 2012). It is thus interesting to
extend our method to support multiple resources in future.
Finally, in this paper, we adopted a uniform distribution
when intializing each aspect vector ( 1√

N
for each dimen-

sion). However, this may not be the best setting for initial
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Figure 1: Performance of our system when varying the number of dimensions of an expansion term vector on the development dataset.

values. Therefore, it will be interesting to test several other
settings of initial values, in our future work.

Conclusions and Future Work
A DQE approach uses one or several resources to generate
a set of diverse expansion terms to obtain a better cover-
age of the different aspects of a query. Its focus is mainly
on removing redundant expansion terms, and it still remains
unclear how the expansion terms cover the aspects. In this
paper, we propose to use trace norm regularization to learn
a low rank vector space to explicitly represent the aspects of
a query: we select a special basis consisting of eigenvectors
to represent aspects, and the absolute values of the eigenval-
ues to represent the association strength of the aspect with
the query. In the low rank vector space, we greedily select
representative expansion terms for each aspect. By doing
so, our method ensures that the selected expansion terms not
only are different among them, but also can better cover the
underlying query aspects. Our experiments on TREC data
confirm the effectiveness of our method.

In the future, we want to explore three directions. First,
we are interested in mapping search results into the same as-
pect vector space and performing search results diversifica-
tion directly in the vector space. Second, we will investigate
whether a close correspondence with the manual subtopics
is crucial in DQE. Finally, since expansion term candidates
from different resources can complement each other, it is de-
sirable to extend our method to support multiple resources.
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