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ABSTRACT
Heterogeneous information network (HIN) contains multiple types
of entities and relations. Most of existing HIN embedding methods
learn the semantic information based on the heterogeneous struc-
tures between different entities, which are implicitly assumed to be
complete. However, in real world, it is common that some relations
are partially observed due to privacy or other reasons, resulting in
a sparse network, in which the structure may be incomplete, and
the "unseen" links may also be positive due to the missing relations
in data collection. To address this problem, we propose a novel
and principled approach: a Multi-View Adversarial Completion
Model (MV-ACM). Each relation space is characterized in a single
viewpoint, enabling us to use the topological structural information
in each view. Based on the multi-view architecture, an adversarial
learning process is utilized to learn the reciprocity (i.e., comple-
mentary information) between different relations: In the generator,
MV-ACM generates the complementary views by computing the
similarity of the semantic representation of the same node in dif-
ferent views; while in the discriminator, MV-ACM discriminates
whether the view is complementary by the topological structural
similarity. Then we update the node’s semantic representation by
aggregating neighborhoods information from the syncretic views.
We conduct systematical experiments1 on six real-world networks
from varied domains: AMiner, PPI, YouTube, Twitter, Amazon and
Alibaba. Empirical results show that MV-ACM significantly outper-
forms the state-of-the-art approaches for both link prediction and
node classification tasks.

CCS CONCEPTS
• Mathematics of computing → network algorithms; • Com-
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1 INTRODUCTION
In recent years, heterogeneous information network (HIN), which
contains multiple types of entities and relations, has attracted exten-
sive attention in both academia and industry [6, 9, 29, 32]. The basic
way to model the information of networks is network embedding
(i.e., network representation learning). It aims to represent nodes
into dense representations with semantic and structure informa-
tion of the networks, and shows significant performance in many
downstream mining tasks, e.g., community detection, link predic-
tion and node classification [3, 13, 28, 44]. The majority of existing
network embedding methods for HIN are based on the heteroge-
neous structure information in the single-view network [5, 9, 29].
Recently, some adversarial based methods [17, 41] generate the "un-
linked" nodes as the negative samples, enabling to learn semantic-
preserving representations in a robust manner.

However, in real world, it is commonly seen that some relations
are partially observed due to privacy sensitive or other reasons,
resulting in the sparsity problem in network. Therefore, the "un-
linked" nodes may be also positive due to the missing relations
in data collection. For example, Fig. 1 (a) shows an example of
HIN in e-commerce systems. The HIN are composed with two
kinds of nodes (i.e., users and items) and three kinds of relations
(i.e., friendship, purchasing and browsing). For a new user or who
with few purchase records, the linkages are highly sparse in the
single-view network of purchasing relation (shown in Fig. 1 (b)),
which will lead to the failure of learning in this semantic relation
space. Fortunately, we can usually find the users may have many
other types of interactions, such as the friendship and browsing
behaviour. In this case, the topological structural information, e.g.,
the linked nodes in friendship and browsing relation spaces, are
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Figure 1: (a) an illustrative example of the network with both entities and relations heterogeneity. There exist two node types,
i.e., user and item; three edge types, i.e., friendship, browse and purchase. And the different interactions between users or
items may show the complementary information. (b) the corresponding multi-view network architecture, which facilitates
our study on exploring the reciprocity between relations.

really promising to make a complement for learning the semantic
of nodes in the purchasing space, as well as enhancing the whole
network embedding.

Distinguishing such reciprocity (i.e., complementary informa-
tion) between relations is promising for providing more useful in-
formation. And it motivates us to address the data sparsity problem
for robust and informative HIN representation learning. However,
it is challenging and we find few of studies have explored this
problem in literature of HIN learning. The first challenge is distin-
guishing the complementary information from different semantic
spaces of HIN. In reality, different relations may have disparate
topological structures, as well as the different semantic meanings
for nodes. So it is challenging to distinguish the complementary
information from such complex semantic spaces of relations. Many
studies (e.g., [9, 17, 29]) explore learning and preserving such hetero-
geneity in HIN, but few of them stress to distinguish the reciprocity
influence between different relation spaces. Other network embed-
ding methods [19, 42] somehow address such relation relevance
problems, but they are task-specific, which need hand-engineering
based on expert knowledge. The second challenge is maintaining
the semantics of different relations in the original HIN while in-
corporating the reciprocity between complementary relations. The
heterogeneity is an intrinsic property of complex HIN with multi-
ple types of nodes and edges. Apart from the reciprocity, different
types of nodes and edges usually fall in different semantic spaces.
So it is important to simultaneously maintain such heterogeneous
property while incorporating the complementary relations.

Based on the above observations, in this paper, we propose a
novel and principled approach: a Multi-View Adversarial Com-
pletion Model (MV-ACM) for the HIN representation learning. In
MV-ACM, each relation space is characterized in a single viewpoint,
enabling us to use the topological structural information in each
view to distinguish the reciprocity between relations. Based on the
multi-view architecture, an adversarial learning process is utilized
to learn the complementary neighborhoods in other views. The
basic idea is that the more similar the network structure is, the
more similar the semantic representations of the same node in dif-
ferent views. In particular, in generator, MV-ACM generates the
complementary view by computing the similarity of the semantic
representation of the same node in different views.While in discrim-
inator, MV-ACM discriminate whether the view is complementary
by the topological structural similarity. Then we update the node’s
semantic representation by aggregating neighborhood information
from the syncretic views. To address the data sparsity problem, two
tricks are specifically designed in our MV-ACM: (1) the inner-view
aggregation of a node in generator, that is to say, we utilize the
collaborative neighborhood information to make a complement
for view-specific information, (2) a "soft samples" strategy, which
means the positive nodes are sampled not only from the direct
linkages in HIN, it can also be the nodes with similar topological
structure in other views through our cross-view updating. Both of
them can alleviate the data sparsity problem, as well as enhancing
the representation learning of HIN.

Our contributions in this paper are summarized as follows:
• We emphasize the usefulness of the complementary infor-
mation between different relation spaces, to alleviate the
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Table 1: Notations

Notation Explanation
G a network

V, E the sets of nodes/edges respectively
O,R the sets of node/edge types respectively
X {xi |vi ∈ V} the set of nodes attributes

vi ,xi a node and its feature respectively
o, r a node/edge type respectively
Gr a view
ei, j,r an edge between vi and vj in view r
Ni,r neighbors of node vi in view r
vi,r the learned representation of node vi in view r
d the dimension of node representations

G,D the generator/discriminator

data sparsity problem in HIN, so as to enhance the HIN
embedding.

• Wepropose a novel multi-view adversarial completionmodel
(MV-ACM). With semantic similarity generator and struc-
tural similarity discriminator, MV-ACM has the ability to
incorporate the complementary structure information, as
well as maintain the original heterogeneous semantics of
network.

• We empirically evaluate our model on six real-world net-
works on two representative downstream tasks, i.e., link
prediction and node classification tasks. Experimental re-
sults show that our MV-ACM significantly outperforms the
state-of-the-art baselines, especially for the sparse network.

2 PRELIMINARY
In this section, we formalize our problem and then introduce the
basic background knowledge on generative adversarial learning.
The important notations are summarized in Table 1.

2.1 Formalization
We first define the heterogeneous information network, the multi-
view network architecture and the view as follows:

Definition 1. The Multi-view Network Architecture. Given
a heterogeneous information network (HIN) [29, 33] G = (V, E,O,

R,X) where |R | ≥ 2, we can always reorganize it as {Gr |r ∈ R},
where Gr = (V, Er ,O), and Er is the set of all edges from edge type
r ∈ R. Thus we have E =

⋃
r ∈R Er and G =

⋃
r ∈R Gr . By this way,

{Gr |r ∈ R} with {X} is a multi-view network architecture, and Gr
is an information network with homogeneous edge type, i.e., a view.

Figure 1 shows an illustrative example of heterogeneous infor-
mation network with such complexities, and the corresponding
multi-view network architecture. The HIN are composed with two
kinds of nodes (i.e., O = {user , item}) and three kinds of relations
(i.e., R = { f riendship,purchasinд,browsinд}). Since there may ex-
ist multiple types of edges between the same pair of two nodes vi
and vj , ei, j will cause ambiguity. To avoid such ambiguity, ei, j,r is
used when referring to an certain edge, where r is the respective
edge type.

Now we can formalize the problem for the Multi-View based
Heterogeneous Information Network Embedding (MV-HINE):

Definition 2. MV-HINE. Given G = (V, E,O,R,X), we aim
to learn the low-dimensional representation vi,r of each node vi in
each view r , fr : V → Rd for r ∈ R, where d ≪ |V|. And the
learned representations should preserve the rich semantics of both
heterogeneous node types and edges types.

2.2 Generative Adversarial Learning
Our model MV-ACM is based on the generative adversarial learning
[12], which could be denoted as the theoretical game between
generator G and discriminator D. It can be formally defined as the
minimax optimization problem:

min
G

max
D

{
EX∼Pdata [loдD(X )]

+ EZ∼Pnoise
[
loд

(
1 − D(G(Z ))

) ] } (1)

3 THE OVERALL FRAMEWORK
Firstly, we introduce the overall framework of our MV-ACM by
addressing the two major challenges mentioned in Section 1, and
leave the implementation details in Subsection 4.

1) Distinguish the complementary information from different se-
mantic spaces of HIN. As shown in Figure 2, there are two major
components competing with each other in our model, i.e., the gen-
erator G and the discriminator D. In order to distinguish the reci-
procity between different views, our G and D interact as follows:
Given a node vi in a specific view r , the generator G(·|r ,vi ;θG)
tries to generate the most complementary views to, 1) fool the
discriminator, 2) complete information for vi in r ; whereas the dis-
criminator D(r ′, r ,vi ;θD ) tries to discriminate whether the view
r ′ is complementary for vi in r , using the samples from true distri-
bution. During the process that G and D play the minimax game,
they receive positive reinforcement from each other. Finally, our
generator G can learns the corresponding underlying reciprocity
between heterogeneous relations.

2) Maintain the semantics of different relations in the original HIN
while incorporating the reciprocity between complementary relations.
As shown in Figue 2, after generating the complementary views,
we update the view-semantic representation of the node vi in view
r , by incorporating the neighborhoods information from these fu-
sioned views. After incorporating the complementary relations,
we put another constraint on the updated representation, which
is computed from the meta-path-based heterogeneous skip-gram
model [9]. Benefit from the rich information reflected by meta-
paths, MV-ACM could preserve the heterogeneity in both node
types and relation types, and maintain the network structures of
the original heterogeneous relations.

4 METHODOLOGY
In this section, we introduce our MV-ACM model in details.

4.1 Discriminator
The goal of our discriminator D(r ′, r ,vi ;θD ) is to discriminate
whether the view r ′ is complementary for the given node vi ∈ V
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Figure 2: The overall framework of MV-ACM. It shows the learning progress for node v in view 2. Firstly, the view-semantic
representations of v in different views are produced by inner-view aggregation respectively. Then the generator generates
the complementary views by computing the similarity between these view-semantic representations; On the other hand, the
discriminator tries to discriminatewhether the view is complementary by using the samples from true underlying distribution.
After generating the complementary view, taking 1 as an example, the representation of v in view 2 is updated by aggregating
neighborhoods information from view 1 to incorporate the complementary relations. Lastly, the meta-path-based skip-gram
is used to preserve the rich information of the HIN.

in the given view r ∈ R, where the θD represents the trainable
parameters ofD. So the discriminator should be both globally view-
aware and locally node-aware, and output a probability how the
view r ′ is complementary forvi and r . We present our discriminator
as follows:

D(r ′, r ,vi ;θD ) = cos ⟨ur
′

D
+Wr ′

D
ni
D
, ur

D
+Wr

D
ni
D
⟩ (2)

where ur
′

D
, ur

D
∈ Rs×1 are the view-specific vectors of views r ′ and

r respectively; ni
D

∈ Rs×1 is the node-specific vector of node vi ,
with s, t ≪ |V|; andWr ′

D
,Wr

D
∈ Rs×s are the translation matrices

between node-specific vector space and each view-specific vector
space respectively. In this case, they are all the trainable parameters,
i.e., θD = {ur

D
, ni

D
,Wr

D
|r ∈ R,vi ∈ V}.

Following the minimax optimization defined in Equation (1), we
should maximize the output log-probability when (r ′, r ,vi ) is a
true sample from the correct underlying distribution, and minimize
the output log-probability when (r ′, r ,vi ) is a false sample from
the generator G(·|r ,vi ;θG). So the trainable parameters θD of our
discriminator could be optimized by:∑

vi ∈V,r ∈R

{
EX∼Ptrue (· |r,vi ) [loдD(X , r ,vi )]

+ EZ∼G(· |r,vi ) [loд(1 − D(Z , r ,vi ))]
} (3)

Lastly, we introduce how to get the true sample (r ′, r ,vi ), which
indicates the view r ′ is complementary for vi in r . The basic idea
is that, the more similar the local structures in two views are, the

more reasonable to believe there exist complementary information
between these two views. So we utilize the structural similarity
between two views to produce true samples. Let the Ptrue (·|vi , r )
denotes the true underlying connecting distribution of node vi in
view r , and we can estimate it as:

p(vj |vi , r ) =
ei, j,r∑

vk ∈V ei,k,r
(4)

Then the locally topological structural similarity of nodevi between
views r ′ and r can be calculated by the Jensen-Shannon distance
between Pr ′,i = P(·|vi , r

′) and Pr,i = P(·|vi , r ) as:

D JS (Pr ′,i | |Pr,i ) =
1
2
[DKL(Pr,i | |M) + DKL(Pr ′,i | |M)] (5)

whereM = Pr ,i+Pr ′,i
2 , and DKL is the Kullback-Leibler divergence:

DKL(P | |Q) =
∑
v

P(v)loд
P(v)

Q(v)
(6)

Note that when the locally topological structures of node vi be-
tween views r ′ and r are identical, D JS (Pr ′,i | |Pr,i ) = 0; otherwise
D JS (Pr ′,i | |Pr,i ) = 1. So we get Sstruc (r ′, r |i) = 1−D JS (Pr ′,i | |Pr,i )
as the locally topological structural similarity between views r ′
and r regarding node vi . Finally, we can estimate Ptrue (·|r ,vi ) and
sample true views for discriminator according to the distribution:

Ptrue (r
′ |r ,vi ) =

Sstruc (r
′, r |i)∑

rk ∈R Sstruc (rk , r , i)
(7)
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4.2 Generator
Firstly, we introduce the trainable parameters θG of our generator
G: ni ∈ Rd×1 is the node-specific vector for node vi ; u0i,r ∈

Rs×1 is the supplementary vector for node vi in view r ; Mr ∈

Rd×s ,Wk
r ∈ Rs×s are the translation matrices regarding view r ,

where the d, s ≪ |V| and 1 ≤ k ≤ K . K is a hyper parameter as
the depth for inner-view aggregation (we will define this soon).
Note that we have removed the subscript G from the notations for
convenience.

4.2.1 Inner-view Aggregation. Following the works in graph neural
network [14, 38], to capture the structural information, the k-th
level (1 ≤ k ≤ K ) supplementary vector uki,r ∈ Rs×1 for node vi in
view r can be aggregated from the neighbors’:

uki,r = aддreдate({uk−1j,r |vj ∈ Ni,r }) (8)

where Ni,r is the set of neighbors (include vi , i.e., self-loop) associ-
ated with node vi in view r . As suggested by GraphSAGE [14], the
aддreдate can have many forms, such as mean aggregator:

uki,r = σ (Wk
r ·mean({uk−1j,r |vj ∈ Ni,r })) (9)

or max-pooling aggregator:

uki,r = max({σ (Wk
r · uk−1j,r )|vj ∈ Ni,r }) (10)

where σ (x) = 1/(1 + exp(−x)) is the sigmoid activation function.
Note that we can conduct the aggregating progress in each view
simultaneously. In this paper, mean aggregator is used to report
our results as their performance is quite similar [14].

4.2.2 Cross-view Updating. We denote the last level supplementary
vector uKi,r as the view-semantic representation; and calculate

Ssemantic (r
′, r |i) = cos ⟨uKi,r ′ , u

K
i,r ⟩ (11)

as the similarity between views r ′ and r regarding node v . Then
the generator G can generate the complementary views for node
vi in view r according to the distribution:

G(r ′ |r ,vi ) =
exp(Ssemantic (r

′, r |i))∑
rk ∈R exp(Ssemantic (rk , r , i))

(12)

Following the minimax optimization defined in Equation (1), we
can have the first loss function L1 for G:

L1 =
∑

vi ∈V,r ∈R

{
EZ∼G(· |r,vi ) [loд(1−D(Z , r ,vi ))]

}
(13)

which could be optimized by policy gradient [41].
Now we can update the view-semantic representation of node

vi in view r by incorporating the information from those comple-
mentary views as:

ui,r = uKi,r +
∑
r ′∈R

G(r ′ |r ,vi )uKi,r ′ (14)

The basic idea is that, the more similar the same node’s view-
semantic representations in two views are, the more reasonable to
incorporate the information between these two views.

Then we can get the overall target representation (see it in Defi-
nition 2) vi,r of node vi in view r as:

vi,r = ni +Mr · ui,r (15)

Algorithm 1: MV-ACM
Input: G = (V, E,O,R,X); meta-paths P; dimension d

and s; walks per nodew ; walk length l negative
samples per node L

Output: the representations vi,r of each node vi in each
view r

1 Initialize all parameters for G and D

2 Generate walksWr in each view r based on Pr
3 Preprocess Eq. (7)
4 while not converge do
5 for Generator_steps do
6 Generate views for each node vi in each view r by

Eq. (12).
7 Incorporate the information from generated views

by Eq. (14).
8 Update G by minimizing Eq. (20).
9 for Discriminator_steps do
10 Sample true views for each node vi in each view r

by Eq. (7)
11 Generate false views for each node vi in each view r

by Eq. (12)
12 Update D by maximizing Eq. (3)

13 return the representations in Eq. (15)

4.2.3 Heterogeneous Skip-gram. In order to preserve the rich infor-
mation of the heterogeneous network, we put another constraint
on vi,r , using meta-path-based heterogeneous skip-gram model
[9] (If there is only one node type, it is the same as skip-gram on
random walks [23, 25]).

In this paper, we denote a meta-path begin with edge type r as:
Pr : o1 −r1− o2 −r2 · · · −rl−1− ol , where l is the meta-path length,
oi ∈ O is the node type, ri ∈ R is the edge type and r1 = r . Then
we can generate nodes sequences Path_r by:

p(vj |v
t
i ;P) =


1

|Ni,r
⋂
ot+1 |

(vi ,vj ) ∈ Ert ,vj ∈ ot+1
0 (vi ,vj ) ∈ Ert ,vj < ot+1
0 (vi ,vj ) < Ert

(16)

For each generated nodes sequence Path_r = (v1,v2, · · · ,vl ),
the positive context of vi is defined as Ci = {vj |vj ∈ P , |i − j | ≤ c},
where c is the window size. Then the skip-gram [23] model try to
minimize the negative log-likelihood:

− loдP(Ci |vi ) =
∑

vj ∈Ci

−loдP(vj |vi ) (17)

And the probability of vj when given vi is defined by the het-
erogeneous softmax function [9]:

P(vj |vi ) =
exp(⟨cj , vi,r ⟩)∑

vk ∈oj exp(⟨ck , vi,r ⟩)
(18)

where oj is the node type corresponding to node vj , r is the edge
type which Path_r begin with, cj ∈ Rd×1 is the context vector of
node vj , and vi,r is calculated by Equation (15). Following meta-
path2vec [9], we use the heterogeneous negative sampling to ap-
proximate Equation (17) and then get the second loss function L2
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Table 2: The detailed statistics of the datasets with sparse views (marked by *)

Task Dataset N-types N-numbers Edges in Each View

Classification AMiner 2 178,385 author-paper
190,645

citation
3,912,854

similarity
1,831,850

PPI 1 15,005 neighborhood
37,210

fusion
1,302

occurrence
13,967

expression
638,876

experiment
227,876

database
125,310

Link Prediction

YouTube 1 2,000 friendship
7,797*

friends
300,450

subscriptions
424,510

subscribers
136,938

favorite
244,330

Twitter 1 40,000 friendship
1,015,026

re-tweet
7,742*

reply
1,136*

mention
4460*

Amazon 1 10,099 co-view
62,973

co-purchase
50,664

Alibaba 2 40,324 browse
102,777

add-to-cart
17,400*

preference
12,204*

purchase
17,206*

for G:

L2 =
∑

vi ∈V

∑
vj ∈Ci

{
− loд σ (⟨cj , vi,r ⟩)

−
∑

vk ∈Nj

loд σ (−⟨ck , vi,r ⟩)
} (19)

where Nj is the negative samples correspond to a positive training
node vj ∈ Ci , which are randomly sampled from node type oj of
node vj .

Lastly. We integrate the Equation (13) and (19) to get the final
objective function for G:

min
G

L = λL1 + L2 (20)

where λ > 0 is the weight to the losses.

4.3 Inductive Learning
We can extend our model effectively to deal with inductive learn-
ing [14], where there may exist unseen nodes after the training
stage. And the extended model can handle the attributes as well.
Following previous works [5, 14], in the extended model, we learn
the trainable functions over the feature X of nodes, instead of train-
ing the parameters vectors of nodes directly. To be more specific,
in generator and discriminator, u0i,r ,ni and ni

D
are not the train-

able parameters, but can be learned by: u0i,r = fr (xi ), ni = д(xi )

and ni
D
= дD (xi ), where xi is the feature of vi , fr (),д(),дD () are

trainable functions respectively. And the rest of our model remains
unchanged. The trainable functions can have different forms such
as multi-layer perceptron [5].

4.4 The Optimization and Time Complexity
We present the adversarial optimization process in Algorithm 1.
The time complexity of generating walks and preprocessing is
O(wl |V||R| + |E |); the time complexity of training isO(|V||R|Ld)
per epoch, wherew is walks per node, l is walk length, L is negative
samples per node, d is the dimension of representations, |V| is the
number of nodes, |E | is the number of edges, |R | is the number
of views (i.e., edge types). Not considering the constant terms, the
time complexity is the same as other scalable models, i.e., linear to
the network scale O(|V||R| + |E |).

5 EXPERIMENTS
Link prediction and node classification is widely used to evaluate
the quality of the nodes representations, as they plays a fundamental
role in many real-world tasks, e.g., the recommendation [19, 29] and
identity mining [13, 28]. So in this section, we empirically evaluate
MV-ACM on six real-world networks from various domains with
these tasks. We describe the datasets and the competitor baselines
first. Then we present the quantitative results, and analyze our
model with more details.

5.1 Experimental Setup
5.1.1 Datasets. We select a series of benchmark datasets [5, 16, 27]
from various domains, i.e., academic networks, biological networks,
social networks and e-commerce networks. The detailed statistics of
these networks are shown in Table 2. We will also specify the sparse
views according to the data and report the link prediction result on
these views additionally to evaluate our models with respect to the
sparsity problems.

1. AMiner. AMiner is an academic research dataset2 [34] which
contains authors, papers and conferences information. We extract
a subset to build a three-view network, with two node types (i.e.,
author and paper) and three edge types (i.e., author-paper, paper-
paper : citation and paper-paper : key terms similarity). The similarity
is calculated using the TF-IDF cosine value of key terms, and the
five-nearest neighbors are kept in this view. We choose eight differ-
ent research areas and label the authors according to the represen-
tative conferences they submitted to. Note that each author may
belong to more than one research areas, so this is for a multi-label
classification.

2. PPI. The STRING PPI dataset3 [31] contains protein-protein
interaction information. We choose Homo Sapiens organism and
build a six-view network, with one node type (i.e., protein) and six
edge types (i.e., gene neighborhood, gene fusion, gene co-occurrence,
co-expression, experimental relation and database relation). And each
protein has features4 [20] that are composed of positional gene sets,
motif gene sets and immunologic gene sets. We label the proteins

2https://www.aminer.cn
3https://string-db.org
4http://software.broadinstitute.org/gsea/msigdb
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Table 3: Quantitative results on link prediction

Model
YouTube Twitter Alibaba

All Views Sparse Views All Views Sparse Views All Views Sparse Views
ROC PR F1 ROC PR F1 ROC PR F1 ROC PR F1 ROC PR F1 ROC PR F1

LINE 67.42 66.25 65.45 68.14 67.22 66.03 58.78 58.11 55.07 56.14 56.07 54.86 54.06 54.71 53.34 53.12 53.87 52.74
DeepWalk 71.58 70.34 66.12 72.84 71.69 67.75 64.17 65.53 60.81 60.21 61.35 60.14 56.86 57.21 54.30 55.24 56.07 53.49
Node2vec 72.41 71.24 66.85 73.81 71.88 67.68 64.43 65.61 61.77 60.67 61.46 60.07 59.41 59.53 57.04 56.80 56.34 54.97
GraphGAN 72.76 71.46 67.07 73.61 72.42 68.17 64.77 65.74 61.83 60.52 61.49 60.24 60.52 60.81 57.22 56.81 56.67 55.09

ANRL 75.45 73.94 70.31 76.42 74.44 71.57 65.34 65.01 62.07 60.84 61.41 61.29 57.11 57.63 54.38 55.61 56.14 53.84
Metapath2vec 71.57 70.51 66.29 72.83 71.81 67.85 64.05 65.51 61.41 60.51 61.37 60.43 58.34 58.87 55.41 56.43 56.14 54.88

HeGAN 73.21 72.64 67.54 74.64 73.81 68.07 64.98 65.91 62.17 60.84 61.81 61.57 60.83 61.08 57.81 57.24 56.69 55.41
MVE 70.47 70.19 65.74 70.89 70.83 66.71 67.41 67.34 63.72 63.57 63.42 63.04 60.17 60.52 56.97 56.70 56.43 55.07
MNE 82.27 81.21 75.13 83.51 81.77 75.53 86.14 86.37 81.72 81.97 81.14 80.47 62.74 62.89 59.13 58.64 58.60 56.71

GATNE-T 84.01 81.20 75.84 84.22 83.14 76.45 86.85 86.41 81.98 82.23 81.97 81.15 64.15 64.48 60.18 59.74 59.88 57.46
GATNE-I 83.94 81.17 75.81 83.47 82.76 76.04 86.67 86.38 81.64 82.74 82.46 80.92 63.97 64.01 59.94 59.37 59.81 57.31
MV-ACM 87.30 85.54 79.46 90.27 90.84 82.65 88.96 89.05 84.01 86.82 86.34 84.89 65.89 66.75 61.77 64.46 65.51 60.78
Gain [%] 3.92 ↑ 5.34 ↑ 4.77 ↑ 7.18 ↑ 9.26 ↑ 8.11 ↑ 2.43 ↑ 3.06 ↑ 2.48 ↑ 4.93 ↑ 4.71 ↑ 4.61 ↑ 2.71 ↑ 3.52 ↑ 2.64 ↑ 7.90 ↑ 9.40 ↑ 5.78 ↑

according to the hallmark gene sets4 which can represent biological
states. This is for a multi-label classification with 50 different labels.

3. YouTube. This dataset5 [36] contains the different interac-
tions information between users from video website YouTube. A
subset is used to build a five-view network [5], with one node type
(i.e., user) and five edge types (i.e., the friendship, shared friends,
shared subscriptions, shared subscribers and shared favorite videos,
which denotes the two users are friends, or they have common
friends or common subscriptions etc). The friendship between users
is treated as the sparse view in our experiments.

4. Twitter. This dataset6 [8] has been built to monitor the spread-
ing processes about the announcement of the Higgs boson on Twit-
ter between 1st and 7th, July 2012. We extract a subset to build a
four-view network, with one node type (i.e., user) and four edge
types (i.e., the follower-friendship, re-tweet, reply and mention). The
re-tweet, reply and mention between users are treated as the sparse
views in our experiments.

5. Amazon. This dataset7 [15] contains the information and
reviews of products from Amazon. The products from electronics
category are used to build a two-view network [5], with one node
type (i.e., product) and two edge types (i.e., the co-viewed relation and
co-purchased relation). As there are no sparse views in this dataset,
we conduct link prediction for it by hiding different percentages of
edges (detail is in Section 5.2).

6. Alibaba. This dataset8 contains users’ shopping logs on the
e-commerce platform of Alibaba. We extract a subset to build a four-
view network, with two node types (i.e., user and item) and four
edge types (i.e., user-item: browse, add-to-cart, add-to-preference and
purchase). The add-to-cart, add-to-preference and purchase between
user and item are treated as the sparse views in our experiments.

5.1.2 Baselines. We compare our model with the state-of-the-art
methods, which fall into three main groups as shown in Table 4.
More information can be found in Section 6.

1. Homogeneous Methods. This group include: LINE (1st+2nd
forms) [33], DeepWalk [25], Node2vec [13], GraphGAN [41], ANRL

5http://socialcomputing.asu.edu/datasets/YouTube
6https://snap.stanford.edu/data/higgs-twitter.html
7http://jmcauley.ucsd.edu/data/amazon
8https://tianchi.aliyun.com/dataset/dataDetail?dataId=42

Table 4: Comparisons between representative models

Model Network Type inductiveHeterogeneous Multi-view Attribute
DeepWalk [25] > > > >

LINE [33]
GraphGAN [41]

DANE [10] > > √ >
ANRL [49]

GraphSAGE [14] > > √ √

DGI [39]
Metapath2vec [9]

√ > > >
HERec [29]
HeGAN [17]
HNE [6]

√ > √ >
MVE [27]

∗
√ > >

MNE [46]
MINES [22]

√ √ > >
GATNE [5] √ √ √ √

MV-ACM
∗ They don’t consider different node types.

[49] and DGI [39]. As these methods can only handle the homo-
geneous network, we train them on each view separately without
discriminating node types. Besides, there is no trivial way for DGI
[39] to predict link probability, so we only report its results on node
classification tasks.

2. HeterogeneousMethods. This group include: Metapath2vec
[9] and HeGAN [17].

3. Muti-view Methods. This group include: MVE [27], MNE
[46], GATNE-T and GATNE-I [5], as well as our MV-ACM.

5.1.3 Parameter Settings. The embedding dimensions d are 128 for
all models. The parameters dimensions s, t in our generator and
discriminator are both 20, and the inner-view aggregation layerK is
1. The number of walks per node is 40, the length of walks is 10, the
window size is 5 and the number of negative samples is 5 for all mod-
els which need them. For the meta-path based models: in AMiner,
the meta-path is author-paper-author and paper-author-paper; in
Alibaba, the meta-path is user-item-user and item-user-item. For
all models, the validation set is used for hyper-parameters tun-
ing (i.e., the learning rate from {0.0001, 0.001}, the batch-size from
{128, 256, 512}, the search bias p,q from {0.5, 1, 2}, the weight to the
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Figure 3: Link prediction results (F1-score) on Amazon
dataset with (5 + p)% edges missing, to the most comparable
methods GATNE-T andMNE.We can find that the gains over
feat are more significant (from 2.6% to 5.0%) as the sparse
problems go more serious (from 15% to 55%).

losses λ from {0.05, 0.1, 0.5, 1} and the early stopping epoch; oth-
ers are set as in their original papers), and the test set is used to
evaluate the performance. We only turn our MV-ACM model to
inductive learning for PPI, which is the only dataset with attributes,
and the trainable functions (fr ,д,дD , see in Section 4.3) are sim-
ple linear transformations. For ANRL, DGI and GATNE-I which
need attributes, we pre-train DeepWalk and take the embeddings
(d = 128) as nodes attributes for them, on all datasets except PPI.
We implement our model MV-ACM1 by Tensorflow-1.129. All the
experiments are conducted on a Linux server with two Intel Xeon
E5 CPU and one GTX 2080Ti GPU.

5.2 Link Prediction
We randomly hide 5%/p% (p is the varying percentages of different
test sets) of edges from the original network as the positive links
and randomly sample disconnected node pairs with the equivalent
number as the negative links to get the validation/test sets, for
each edge type (i.e., each edge type has (5+p)% missing edges). For
YouTube, Twitter and Alibaba datasets, thep is set to 10; for Amazon
dataset the p is set from {10, 20, 30, 40, 50}. We train each model
on the residual network and obtain the node representations. Then
we calculate the cosine similarity of the learned representations to
predict the link probability. We take the commonly used ROC-AUC
(the area under the ROC curve), PR-AUC (the area under the PR
curve) and F1-score as the evaluation criteria [5, 35].

We present the quantitative results in Table 3 (the gains is com-
pared with runners-up) and Figure 3. Andwe can have the following
observations:

• MV-ACM consistently outperforms state-of-the-art baselines
from all groups on the four datasets.

• Heterogeneousmethods only outperform homogeneousmeth-
ods on Alibaba dataset, where there exists two node types
and they can preserve these information. But for both YouTube
and Twitter, where there exist only one node type but with

9https://www.tensorflow.org/

Table 5: Quantitative results on node classification

Model AMiner PPI
Macro-F1 Micro-F1 Macro-F1 Micro-F1

LINE 60.12 60.51 43.81 46.57
DeepWalk 62.17 52.33 44.17 46.55
Node2vec 65.44 65.90 45.31 47.92
GraphGAN 63.71 63.88 44.52 47.10

ANRL 63.21 63.47 49.56 42.93
DGI 64.81 65.34 54.38 57.14

Metapath2vec 65.10 65.49 44.01 46.79
HeGAN 65.87 65.96 44.82 46.91
MVE 63.50 63.57 46.82 49.34
MNE 67.22 67.47 50.87 54.03

GATNE-T 70.62 70.90 52.48 55.22
GATNE-I 70.17 70.24 55.61 58.47

MV-ARCM 72.89** 73.51** 58.72** 61.90**
**: significantly outperforms the runner-up based on paired t-test

at the significance level of 0.01.

different relation types, these heterogeneous methods de-
generate into homogeneous methods, as they can’t handle
different relations between the same pair of two nodes the
same with homogeneous methods.

• Muti-view methods outperform the other groups (except
for one case, as MVE only preserve first-order information),
which indicates the importance and usefulness of learning
such different relations between the same pair of two nodes.
So the multi-view architecture are basically more superior
for modeling real-word complex HIN.

• As shown in Figure 3, the more missing data are, the more
significant improvements MV-ACM makes. Our model can
deal with the sparse problems better than the others.

• Meanwhile, the most significant improvement can be found
with YouTube dataset, but it is not surprising, as the shared
friends and the shared favorite et al. relations are comple-
mentary to the friendship for most users. Besides, MV-ACM
outperforms other muti-view based methods not only in
sparse views, but also in all views. These observations to-
gether indicate that MV-ACM has the ability to incorporate
these complementary structural information, as well as main-
tain the original semantics of the HIN.

5.3 Node Classification
We train each model and take the representations of nodes as the
features for the multi-label classification task. For these models
which can’t handle the attributes in PPI dataset, we concatenate the
representations and raw attributes as final features following [5, 38].
We randomly sample 10%/80% nodes to get the validation/test sets,
and then train the one-vs-rest logistic regression classifier with L2
regularization [13, 27] on the remaining 10% nodes. We repeat 5
times and evaluate the average performance for each model. We
take the commonly used Macro-F1 and Micro-F1 as the evaluation
criteria [13, 35].

We present the quantitative results in Table 5. And we can have
some similar observations as in link prediction task. Besides, ANRL
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Figure 4: The importance of our adversarial learning.

Figure 5: The importance of inner-view and cross-view ag-
gregation.

and DGI outperform other homogeneous methods on PPI more
significantly, as they can model these informative attributes asso-
ciated to nodes in PPI datasets. It can be also seen that MV-ACM
consistently outperforms all baselines on the two datasets with
statistical significance. These results on node classification tasks
indicate that MV-ACM can preservemore robust and semantic infor-
mation for the real-word networks with both entities and relations
heterogeneity.

5.4 Model Analysis
In this subsection, we will analyze our model from three aspects: the
effectiveness of adversarial learning, the effectiveness of cross-view
and inner-view aggregation, model convergence and scalability.

5.4.1 The Effectiveness of Adversarial Learning. Firstly, we focus on
our adversarial learning, and evaluate its ability to distinguish the
complementary information. To be more specific, we denote a vari-
ant of our model as MV-M, by optimizing generator only with loss
function L2 in Equation (19). So the only difference is that MV-M
aggregates information from all views without adversarial learning.
Their performance on link prediction tasks is shown in Figure 4,
from which we can conclude that: (1) there do exist complementary

Figure 6: Convergence and scalability evaluations on
AMiner dataset. (a) The learning curves. (b) The training
time increases in linear scale w.r.t the number of nodes.

information between different relations as aggregating information
from other views gets better performance compared with GATNE-T,
(2) however, different relations are not always complementary, as
aggregating information from all views gets worse performance
compared with MV-ACM. So our adversarial learning is able to
distinguish the complementary information out from others, which
is crucial for completion.

5.4.2 The Effectiveness of Cross-view and Inner-view Aggregation.
Then we focus on the incorporating process. We denote two variant
of our model as MV-ACM_no_inner and MV-ACM_no_cross, by
removing the inner-view aggregating (Eq. (8)) and and cross-view
updating (Eq. (14)) respectively. Note that they are different from
MV-M as they utilize the adversarial learning to distinguish the
complementary information. The results on link prediction tasks
are shown in Figure 5, and we can see that: MV-ACM_no_cross
performs almost the same as MV-ACM_no_inner, and they are both
worse than MV-ACM. Therefore, the complementary information
from other relations is as important as the structural information
from neighborhoods within one relation. They can both contribute
to learn more robust representations for HIN.

5.4.3 Model Convergence and Scalability. We report the learning
curves of MV-ACM on AMiner in Figure 6 (a). We can see that the
generator and the discriminator decrease the losses of both by the
minimax game, and converge well with about 20 epochs. We also
sample 4 subsets of AMiner with the number of nodes from 10
thousand to 40 thousand, and report the training time compared
with GATNE-T, HeGAN and GraphGAN in Figure 6 (b). We can see
that the training time of MV-ACM increases in linear scale w.r.t the
size of network. And MV-ACM is superior to most existing scalable
methods, except for GATNE-T as it has no adversarial process.

6 RELATEDWORK
Our work is mostly related to network embedding and adversarial
learning. The related work are summarized as follows.
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6.1 Network Embedding
We review this related work in network embedding, heterogeneous
network embedding and multi-view network embedding. We sum-
marize some representative models in Table 4 corresponding to
their capacity,

6.1.1 Network Embedding. Network embedding, which aims to
represent nodes into dense vectors in low-dimensional spaces, has
shown significant effectiveness in various data mining tasks [3, 28,
29, 44]. It can be divided into two categories, unsupervised network
embedding (NE) and graph neural network (GNN) [5].

NE is also related to spectral clustering and matrix factoriza-
tion [1, 2, 26], which has been carefully studied since a long time
ago [37]. Facing the daunting challenges of enormous scales and
inspired by the deep learning techniques [11, 23], A number of
pioneering approaches in NE have been proposed based on solving
structure-preserving optimization problem. DeepWalk [25], LINE
[33] and Node2vec [13] use different sampling strategies to preserve
the topological structures: depth-first neighborhoods, breadth-first
neighborhoods and a balance between them respectively; GraRep
[4], NEU [43], ProNE [47] and AROPE [48] propose to preserve the
high-order adjacency proximity; Struc2vec [28] propose to preserve
the structural identity based on degrees; SDNE [40] uses deep au-
toencoder to replace the linear transformation; NetSMF [26] shows
that these approaches are approximately factorizing some respec-
tive matrices, so they are equivalent in essence; DANE [10] and
ANRL [49] uses autoencoder to preserve attributes proximity. Most
recently, Deep Graph Infomax (DGI) [39] introduces maximizing
mutual information into network analysis.

Meanwhile, approaches in GNN are proposed for network learn-
ing in a task-specific supervised setting primarily. GCN [18] uses
convolutional operations while GAT [38] uses attention mecha-
nisms to aggregate neighbors’ attributes into the nodes represen-
tations. GraphSAGE [14] learns functional representations in an
inductive manner, by performing some specific aggregators over
neighbors.

Though empirically efficient and effective, all these approaches
above can handle only the homogeneous network, i.e., only one
single node type and one single edge type.

6.1.2 Heterogeneous Network Embedding. Heterogeneous networks
are proposed to model nodes and edges of various types [9, 29].
PTE [32] preserves proximity between different node types. Metap-
ath2vec [9] uses meta-path based randomwalk and a heterogeneous
skip-gram to learn different semantics. HERec [29] transforms se-
mantic meanings by a set of functions and proposes extendedmatrix
factorization. HNE [6] uses deep architectures to preserve attributes
information and learns different nodes to unified vector space, how-
ever it can’t scale well to large networks. Though empirically effec-
tive, these studies above try to learn and preserve the distinctive
semantics of edges and nodes [17], they rarely speak of the multiple
relations between the same pair of two nodes [5], i.e., the multi-view
network. Thus these approaches ignore the reciprocity of different
relation types.

6.1.3 Multi-view Network Embedding. In reality, we can usually
find many types of relations or interactions between the same
pair of two nodes. Recently, some preliminary models have been

proposed to handle the multi-view property. PMNE [21] utilize
Node2vec to learn node representations into unified space. While
MINES [22], MVE [27], MNE [46] and mvn2vec [30] suggests to
preserve the semantics of different views respectively. To be more
specific, MVE [27] preserve the first-order proximity and then use
attention mechanism in a task-specific supervised ways; MNE [46]
uses a common representation to bridge all views indirectly; while
mvn2vec [30] preserves all views’ informationwith collaboration di-
rectly. Inspired by GraphSAGE [14], GATNE [5] proposes a general
model to handle heterogeneous multi-view network, and aggregate
information in each view-specific neighborhood.

6.2 Adversarial Learning
Generative adversarial networks (GAN) [12] have received exten-
sive attention, since it demonstrates superior success in various
applications [11, 12]. By designing the minimax theoretical game,
generator and discriminator compete to improve each other, and
learn the underlying data distribution in unsupervised setting. In-
spired by GAN, someworks [24, 45] take a fixed prior distribution as
regularization for network embedding, like ANE [7] et al. . Graph-
GAN [41] proposes a graph softmax and unifies generative and
discriminative thinking for network embedding. HeGAN [17] pro-
poses relation-aware generator and discriminator to capture the
rich semantics for HIN, and sample the fake nodes from a continu-
ous distribution efficiently.

However, after reviewing the related works in network embed-
ding and adversarial learning, we find that they mainly focus on
preserving the distinctive semantics of different entities and/or
relations, and few of them stress the sparsity problems and ex-
plore the reciprocity. They don’t distinguish whether there exists
complementary information across vies, which can enhance the
network representation learning. Meanwhile, some other meth-
ods, proposed to handle the sparsity problems, are task-specific
or domain-specific, which need hand-engineering based on expert
knowledge, e.g., SHINE [42] and CMAP [19].

7 CONCLUSION
In this paper, we emphasize the sparsity problems for real-world
complex HIN embedding, and show the importance and usefulness
of the complementary information between different views for
completion. We propose a novel and principled model MV-ACM
based on adversarial learning, to distinguish and incorporate such
complementary information from different semantic space of HIN.
Then MV-ACM can update the node’s semantic representation
by aggregating neighborhood information from different views.
Systematical experiments on six real-world networks shows the
prior performance of MV-ACM on two downstream tasks compared
with the state-of-the-art baselines. In the future, we will take more
attributes of the relations into consideration.
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