
LISP AND SYMBOLIC COMPUTATION: An International Journal, ?, ??–??, 2004
c© 2004 Kluwer Academic Publishers – Manufactured in The Netherlands

A debugging environment for lazy
functional languages

GUY LAPALME (lapalme@iro.umontreal.ca)

Département d’informatique et de recherche opérationnelle
Université de Montréal
CP 6128, Succ ”A”
Montréal Québec Canada
H3C 3J7

MARIO LATENDRESSE (latendresse@crim.ca)

Centre de recherche informatique de Montréal
3744 Jean-Brillant
Bureau 500
Montréal Québec Canada
H3T 1P1

Keywords: Debugging, Lazy functional language

Abstract. This paper describes a new approach for debugging lazy functional lan-
guages. It rests on the fact that a functional program is the transformation of an ex-
pression; one debugs a program by investigating the syntactic form of the expression and
by stopping the reduction process at given points. We show what problems are involved
and our approach to solving them in a prototype implementation.

1. Introduction

Functional programming languages using lazy evaluation have shown a
great potential for all kind of applications. New implementation tech-
niques based on graph reductions of combinators [12] and supercombinators
[1] allow an efficient use of the computer for such programs. As they in-
volve some modifications of the underlying graph structure of the programs,
classical debugging tools such as traces or stack frames printouts are inad-
equate. Lazy evaluation delaying the computation of an expression until
it is needed, the evaluation sequence is usually quite hard to predict. The
current implementations of lazy pure functional languages (Miranda, LML
or Haskell) do not provide debugging tool such as traces, breakpoints and
stack inspection facilities commonly found in non-lazy functional languages
(Lisp, Scheme and ML). This could be attributed to the “laziness” (pun
intended) of the implementors but, as we show in this paper, the problem
is more deeply rooted in the subtleties of lazy evaluation. A debugging

2 LAPALME AND LATENDRESSE

tool should not change the semantics of a program; but in itself, printing
of information might involve evaluating an expression just for the sake of
printing it and in doing so, it might change the evaluation order. Another
point is the fact that in a pure functional language, no side effect are per-
mitted, but printing such information is such a side-effect. The way around
this problem, is to modify the function so that it returns not only the result
but also the debugging information. But this in turn changes the type of
the function and every call site has to be modified to take that information
into account.

The goal of this paper is to make clear the issues involved in presenting a
“non-intrusive” debugging environment for a lazy functional language and
use it to debug a small program.

Currently, no well established tool can help a programmer debug a pro-
gram that uses lazy evaluation. Hall[2] and Runciman[10] have given a few
ideas but no definitive system is yet accepted. ML[7] designers have even
rejected lazy evaluation on the ground that they were unable “to see the
consequences of lazy evaluation for debugging” [6]

As we are convinced of the advantages of lazy evaluation, we think that it
is more appropriate to find an original approach to develop and debug lazy
functional programs because, as we show in the next section, debugging
methods for eager evaluation are not appropriate in this case. Section 3
presents our approach to debugging and shows its application within a
prototype. We then discuss its implementation and we compare it with
previous work.

2. Approaches to Debugging

Functional languages (Lisp in particular) usually have well designed break
packages that can stop the execution of a program at a point and permit
the “inspection” of stack frames to see the current values of the variables;
in some cases, it is possible the execute arbitrary commands and functions
in the context of the “broken” program in order to find more easily the
cause of the erroneous behavior. Traces of functions can be built upon that
facility by breaking a function at its start and/or at its end, printing the
values of the parameters and/or the result and then continuing with the
execution of the program after the function call.

This works well in a language with eager evaluation (all parameters being
completely evaluated before a function is called) because the stack frames
contain fully evaluated values that can be inspected without changing their
values. Unfortunately, this approach cannot be used with a language that
implements lazy evaluation unless good care is taken to display partially

A DEBUGGING ENVIRONMENT FOR LAZY FUNCTIONAL LANGUAGES 3

evaluated expressions; in the Lisp debuggers these kind of values only occur
when closures are involved which are then usually show as “black boxes”
such as #<closure ...>. This simple minded approach to partially evalu-
ated values should not be used in a language with a lazy evaluation order
because such values occur frequently; they are the rule and not the excep-
tion. Lazy evaluation also permits the natural definition of infinite or cyclic
data structures that have to be shown in meaningful way and in terms of the
original program in order to be helpful. In Lisp, these values can only be cre-
ated using data structure “surgery” techniques like rplaca/rplacd which
then have to be printed with special care (e.g. setting the *print-circle*
flag).

Lazy evaluation in a pure functional language is often implemented using
graph reduction where the notion of environment and stack frames is not
relevant; it should not be imposed only for the purpose of debugging.

For all these reasons in a lazy functional language we cannot rely on the
primitives of a language to obtain the trace of the flow of control. This
conclusion has also been reached by Peyton-Jones:

“It seems that existing debugging techniques (like putting print
statements in the suspected functions, or examining dumps) are
inappropriate due to the absence of side effects, and the peculiar
evaluation order caused by lazy evaluation”.[8]

In a functional language, all the information given by the application of
a function is its value. For example, given the following Haskell[3] function
definition: 1

fact n | n==0 = 1;
fact n = n*fact (n-1)

we cannot simply insert a primitive to print its argument upon entry to the
function because that would create a forbidden side-effect. In a functional
language, printing is done when an expression returns a character string to
the “top-level”; this means that for a function to show intermediate results,
it has to return these intermediary results. This changes the effect of the
original function. This is an annoyance for debugging because that function
changes but also all other expressions referencing it (they all have to deal
with intermediary results). Hall[2] describes a system that implements this
transformation automatically.

1As we were mainly interested in the run-time aspects of the functional language, we
restricted ourselves to a small subset of Haskell but that includes all the “interesting”
implementation problems. The appendix describes the language we used in our prototype.

4 LAPALME AND LATENDRESSE

Another problem is the order of evaluation. In a classical language,
control flow is part of the semantics of the language. Each instruction is
executed in a strict order that is well known and specified by the program-
mer. Showing an intermediary result relies upon this fundamental principle
of execution flow. Lazy evaluation can delay the evaluation of parts of ex-
pressions and so the control flow is very hard to follow. For example, in the
expression f[2+4,3*4], we cannot determine if 2+4 is evaluated before 3*4
or even if it is evaluated at all, unless we are aware of the implementation of
f; a debugging method that would put too much stress upon the evaluation
order would be very delicate to use.

The fact that lazy evaluation can propagate partially evaluated expres-
sions all along the execution of a program further complicates the matter.
We cannot force the evaluation of an expression only for the sake of see-
ing its value for debugging because that could change the semantics of the
program (the “Heisenbug effect”). So that implies being able to show a
partially evaluated expression and not only final values.

A last important fact is related to the graph reduction used for the imple-
mentation of lazy evaluation. This means that the internal representation
of the graph of the expression is continually modified and in some cases it
amounts to modifying the original script of the program. So special care
has to be taken when printing values and relating them to the program.

2..1 Previous works

Hall and O’Donnell[2] describe an implementation independent method
for printing intermediary results. For example, fact described above would
be transformed to give a form analogous to the following one:

fact’ n debug | n==0 = (1,[n,1]);
fact’ n debug = (result*n,[n]++debug_out++[result*n])

where
{(result,debug_out)=fact’ (n-1) debug};

Evaluating fact’ 3 [] gives the following result:

(6,[3,2,1,0,1,1,2,6])

which is pretty printed to display this information in a more readable man-
ner such as:

A DEBUGGING ENVIRONMENT FOR LAZY FUNCTIONAL LANGUAGES 5

fact 3
fact 2

fact 1
fact 0
1

1
2

6

Hall and O’Donnell show how to automatically transform a functional pro-
gram in this manner but they have no easy way of stopping the evaluation
at one point. They also present another method of debugging but it relies
on the ability of calling the evaluator at run time. For reasons given above,
we choose not to go into that direction.

Runciman and Toyn[10] use a “snapshot” to show the sequence of trans-
formations that lead to a result and in this respect their work is closer to
ours. The evaluation of an expression can be either be stopped by the user
or by the system when a run-time error occurs (e.g. a division by 0 or an
overflow). Here is what a snapshot would look if a user interrupted the
computation of fact 4:

fact 4 <<< interrupted >>>
fact (n -> 4) -> (n->4)*(fact (n-1 ->3)) ->

fact (n ->3) ->(n->3)*(fact (n-1 -> 2))

This method displays a set of transformations and not only the state of
the expression at the moment of the interruption. It is implemented by
using special annotated nodes in the program graph. An annotated node
is used by the transformations to keep track of the derivations that gave
the resulting value. When an interruption occurs, these annotations are
printed in a meaningful way.

Snyder[11] describes a method called “lazy debugging” for deferring de-
bugging decisions until run-time in lazy functional programs. The exe-
cution model uses the Turner combinators [12]; by keeping appropriate
information, it reconstructs a “meaningful source-like representation” of
the original program. The approach is interesting and suggests the use of
traces and breakpoints similar to the ones we have defined, unfortunately
his current system does not yet make a clear relation between the current
expression and the original script. This point is of fundamental importance
for a debugging tool and is surely much more than a simple user interface
design issue as he suggests.

6 LAPALME AND LATENDRESSE

2..2 Our debugging tool

Before presenting our debugging tool, we give the design criteria that
such a tool should possess:

• the programmer should not have to understand the implementation
methods of the language. We do not think it is appropriate to show
the state of evaluation by presenting the argument stack. It should
not be necessary to know the order of evaluation to use the debugging
tool.

• the mechanism should be integrated in the functional language. It
should not be necessary to know many semantic and syntactic details
that are outside the functional language itself.

• the debugging tool must not change the semantics of the language;
evaluation must remain fully-lazy.

• the implementation of such a mechanism should not imply a great
loss of efficiency and none at all when debugging is not “enabled”.

Our debugging tool is based on the simple principle of the equivalence of a
symbolic expression. For example, given the following definition:

gcd a b | a == b = a;
gcd a b | a > b = gcd (a-b) b ;
gcd a b | a < b = gcd a (b-a)

A good way to understand the behavior of that function is to follow the se-
quence of reductions that occur in the transformation of an expression that
uses it. Imagine that we can see the state of the computation at certain
point in the reduction of an expression. For example, gcd 11 5 is trans-
formed in gcd (11-5) 5, then in gcd 6 (6-5), gcd (6-1) 1, gcd (5-1) 1
. . . until we arrive at gcd (2-1) 1 that finally gives 1. These transforma-
tions do not change the final value of the expression; at each point the value
is the same but expressed in different forms.

This idea of stopping and showing the current expression forms the basis
of our debugging tool. We build a mechanism that can stop the evaluation
before or after certain parts of the script of the program and that shows
the state of the transformations in order to understand what is causing the
wrong behavior.

To do this, we introduce two “break operators” 2 to indicate a break
point at an expression; brkBef indicates a stop before the evaluation of

2Haskell syntax does not allow unary operators, so we use function names instead.
We call them “break operators” to indicate that they are not real functions because they

A DEBUGGING ENVIRONMENT FOR LAZY FUNCTIONAL LANGUAGES 7

the expression whereas brkAft indicates a stop after evaluation. Defining
a unary operator makes it very simple to embed the debugging tool in the
language; no special syntax is needed and guarantees that the expression
to be traced is always correctly formed. For example, in the expression
3*2 - brkBef(4*7) execution stops before reducing (4*7).

To obtain a trace, we use brkAll which can be seen as the combination
of the brkBef and brkAft operators; it stops before each intermediary
evaluation and after evaluation. We also define brkOff to disable a break
point and brkOn to reactivate it. The next section give examples of their
use.

3. Our prototype environment

This section presents in more details the use of the debugging operators.
Their use is illustrated in the context of our prototype implementation
originally developed in Common Lisp on a Xerox 1109 Lisp Machine; it has
now been ported in Allegro Common Lisp on a Macintosh.

Figure 1 shows the environment composed of five text editing windows
each having a specific role in debugging:

• script window (top left) holding the program; syntax errors are indi-
cated in this window. As we are interested in the run time aspects
of the execution, we take for granted that there are no type errors in
the program.

• starting expression (top right) that can reference functions defined in
the script.

• current expression (middle) whose value is equivalent to the starting
expression and represents the state of the transformations done upon
it.

• current sub-expression (bottom) is the expression having as root the
current reduction point. This part of the expression will be modified
in the following transformations.

• final result (middle right) appears in a special window when evalua-
tion of the starting expression is finished.

The last three windows are alternative views of the transformations that
occur on the starting expression, but the experience showed that it was
useful to separate them.

are treated in a special way by the interpreter. Their functional reading is the same as
the identity function.

8 LAPALME AND LATENDRESSE

Figure 1: The five windows, at a break point, as seen on the Macintosh.

Figure 1: The five windows, at a break point, as seen on the Macintosh.

A DEBUGGING ENVIRONMENT FOR LAZY FUNCTIONAL LANGUAGES 9

Break operators can be inserted either in the script or in the starting ex-
pression and reductions are performed until a break point is encountered.
The user then sees the state of the current sub-expression partially evalu-
ated; the corresponding part in the script and the starting expression are
emphasized using a bold font in the text editor windows (see figure 1).
The expressions are written using as much as possible the Haskell syntax
of the original programs taking care of showing shared sub-expressions by
introducing where clauses (see the current expression window on middle of
figure 1).

3..1 Using the break operators

3..1.1 Break before

The operator brkBef is used to indicate a break point before reducing a
sub-expression. For example, in figure 1, we added a brkBef in the grtr
function to see the expression at that point. We see the different expressions
at some point in the reduction process and their relation with the original
program. By placing this operator at the start of each right hand side of
the equations we can visualize the arguments at each entry of the function.
It can even be put within the guards to obtain a trace at the time of their
evaluation.

3..1.2 Break after

The operator brkAft shows the value of sub-expression once it has been
reduced. Why do we need such an operator? If we only kept the break
before, then we would need to know the order of evaluation to see the
result of a sub-expression. For example, in 2 - g 5 - f 6 if we want to
know the value of g 5, we could put a break point before f 6 but that would
imply knowing the evaluation order. By breaking after the evaluation with
2 - brkAft(g 5) - f 6, we can be certain to have a break when the final
result of g 5 is computed without being aware of this order.

In the case of a result that is not a list or a tuple, the break occurs when
the expression does not contain any application (i.e. it is in weak head
normal form). In the case of a list or tuple, we chose to be more “selective”
because for example in brkAft[2-3,4*5] the stop would occur immediately
after recognizing that it is a list so the value would be equivalent to the
starting one. So we stop only when the whole list has been produced; not
all elements have been necessarily evaluated but the whole list has scanned
until the end. There are cases shown in [4] where this choice is debatable
but on the whole it usually gives the intended effect. Of course, no break
point is ever met in the case of infinite structures.

10 LAPALME AND LATENDRESSE

3..1.3 Trace Operator

To continuously follow the transformations of an expression, we introduce
brkAll, a debugging operator that stops before and after each intermediary
evaluation of an expression. It can be seen as a combination of brkBef and
brkAft but in this case, we do not stop on the reduction of a constant.

3..1.4 Disabling Break Points

The preceding operators (especially the trace one) can generate quite a
lot of output and so it is important to have a way for dynamically disabling
the static break points that we put in the script. We define brkOff for this.
Suppose that we want to trace a function h but not the computation of its
argument given by g 23; we simply write brkAll(h (brkOff (g 23))).
In this expression, brkOff disables all break points within g but not the
ones in h. There are three reasons for having such a disabling mechanism:

• functions implemented by another programmer or predefined in the
environment should appear as indivisible entities and not be traced.

• a programmer might want to disable break points in certain parts of
scripts to be able to concentrate better on the “suspect” parts. There
are even cases where it is impossible to syntactically remove break
points to obtain the same effects as the dynamic operator brkOff.

• we might want to remove a break point incurred by recursion from
another level.

We have also defined the brkOn operator to dynamically reactivate break
points in the context of brkOff.

3..1.5 Methodology of use

By combining these simple operators and by inserting in the appropriate
places in the script we can obtain almost any information that would be
interesting in a program. Table 1 gives a summary of the use of the opera-
tors given the place where the break operator is inserted . Latendresse[4]
gives more examples of the use of these operators for debugging a functional
program. Of course, this environment showing the state of the transforma-
tions on the current expression is also available when a “real” error occurs
(e.g. head of an empty list) and that in itself is a big improvement on the
current practice of only printing a cryptic error message.

3..2 Permanence of break points and CAF

The break operators can be used either in the script or in the expression
to be evaluated but there is a fundamental difference between these uses

A DEBUGGING ENVIRONMENT FOR LAZY FUNCTIONAL LANGUAGES 11

brkBef brkAft brkAll

f | g1 = rhs1

· · ·
| brk gi = rhsi

· · ·
| gn = rhsn

stopping
before the ith
equation and
showing the
values of the
arguments of f

stopping
before the call
to the ith
equation

trace of the
guard of the
ith equation

f | g1 = rhs1

· · ·
| gi = brk rhsi

· · ·
| gn = rhsn

stopping
before the ith
equation and
showing the
values of the
arguments in
the right hand
side

stopping
before
returning from
the call to the
ith equation

trace of the ith
equation

f | brk g1 = rhs1

· · ·
| brk gi = rhsi

· · ·
| brk gn = rhsn

stopping
before the call
to the function
and showing
the arguments
of f

indicates the
chosen right
hand side
without
showing the
values of the
arguments

trace of the
guards of the
function

f | g1 = brk rhs1

· · ·
| gi = brk rhsi

· · ·
| gn = brk rhsn

stopping
before calling
the function
and showing
the values of
the arguments

stopping
before
returning from
the call

trace of the
function

Table 1: Effects of the placement of break operators denoted here by brk.

12 LAPALME AND LATENDRESSE

because, in the script, the operator has a certain permanence and can be
reused many times. A brkBef in the body of a function is used at each
call of the function; of course, this is a consequence of the instantiation of
the body of the function where it appears as any other operator. But there
are some functions that are not instantiated when they are used and so a
break operator within such a function disappears. A simple example is

f = brkBef(1:f)

that seems to imply that a break will occur for each new element in the f
list. But the definition of f is modified when evaluated to give an infinite
list of 1s and making brkBef(1:f) disappear. The corresponding super-
combinator (see next section) for f is removed after the creation of the first
two 1s of the list. So the brkBef disappears and the use of f does not
incur further break point. This behavior will occur for any CAF (Constant
Applicative Form)[9, p. 224]. So the permanence of break operators are
not guaranteed even in the script and this is consistent with the concept of
lazy evaluation although it can be a source of confusion to the unwary. This
disappearance is less obvious for supercombinators which were developed
in order to find the maximum number of CAF. For example,

f x = x + (2 + brkBef 4)

is translated into two supercombinators

$f x = x + $cl
$cl = 2 + brkBef 4

now the evaluation of f 1 - f 2 only causes one break point because $cl
is only reduced once as necessary to keep full laziness.

This problem is a very difficult issue that is at the root of full laziness.
Should we choose not to generate a CAF that includes a break operator, we
would change the behavior of the program. We decided to keep the original
semantics so that a part of a script that is evaluated only once is traced
only once. Another approach would have been to keep the break operators
permanent while keeping the full laziness by modifying the implementation
of the reduction. Latendresse[4] discusses the consequences of that choice
that was considered but not implemented in our prototype.

4. Implementation of the Break Operators

4..1 The supercombinator compiler

The supercombinator compiler transforms functions and expressions in
such a way that fully lazy evaluation becomes easily feasible with a simple

A DEBUGGING ENVIRONMENT FOR LAZY FUNCTIONAL LANGUAGES 13

interpretation of the resulting code. The actual Lisp function that inter-
prets the supercombinators is only 3 pages long, including instantiation of
supercombinators and execution of the list and arithmetic operators. It is
implemented using the well known techniques described in [9].

Our compiler creates a distinction between supercombinators that have
the same names as user defined functions and intermediary supercombina-
tors generated for the sake of full laziness. This distinction permits us to
display user defined functions names and avoid the display of intermediary
supercombinators.

To be able to display comprehensible expressions at break points, it is
necessary for the compiler to keep the names of global and local func-
tions and the parameters for local functions. This slight overhead provides
enough information for good display of the current expression at break
points (see figure 1).

4..2 Reduction in the case of break operators

As said before, we use operators to introduce break points in a script.
These operators are similar to other functions found in the language, they
are therefore treated in a similar fashion by the compiler and the interpreter.
The full effects of the break operators are treated by the interpreter. For
the compiler, a small difference is made between an ordinary function and
a break point operator.

We now give a brief discussion of the interpretation of break operators.
In the case of the trace operator brkAll it is necessary to include a new

parameter to the interpreter that controls the display of traces. The other
two operators brkBef and brkAft do not need to be dealt specially by the
interpreter. We added a parameter to the interpreter to implement the
operators brkOff and brkOn. This parameter indicates if break points are
active or not.

The operator brkBef is easily implemented as it requires a simple stop of
the interpreter. The operator brkAll recursively calls the interpreter with
a demand for a trace. The trace is interpreted as a break point before each
evaluation of operators and calls to functions. Note that we keep track of
which supercombinators represent functions.

The operator brkAft deals with compound objects in a special way. To
perform its task correctly, it reconstructs a node passing along itself on
the other part of the compound object. It is only when it cannot do this
operation that a break point is effectively done. In this way, a break point
really occurs when all elements of the list have been seen. This works
properly as the ith element cannot be accessed without scanning the first
i − 1 elements.

14 LAPALME AND LATENDRESSE

The compiler avoids generating supercombinators in the case of break
point operators applied to a constant applicative form (CAF). A supercom-
binator is generated for the CAF but the break operator is not included in
this CAF. Simply put, the presence of a break operator does not impel the
creation of a supercombinator to share its result. In this way the operators
remain in the compiled script and their permanence is considered a benefit
for debugging. This is in contrast with section 3.2 that discussed the case
of a CAF that surrounds a break point.

4..3 Algorithm to display the current expression

As can be seen from figure 1, the environment displays the current ex-
pression at break points. The algorithm to accomplish this is very similar
to the interpreter itself!

The main difference is that no operator is ever interpreted and some su-
percombinators are not instantiated. The occurrence of a supercombinator
is treated in three different ways depending on its type. If it is directly
related to a global function, the name of that function and the arguments
along the spine are displayed.3 If it is directly related to a local function,
a unique name is displayed4 with the arguments along the spine. In this
case, an instantiation is performed on a copy of the supercombinator of the
local function to recreate a local definition to display in the where clause;
it is necessary to include identifiers for the unbound parameters. Finally, if
it is an intermediary supercombinator, a full instantiation on a copy of the
body is performed as all necessary arguments are present along the spine.
Further local definitions occur in the “where clause” to represent sharing
of sub-expressions. These were detected as part of the algorithm to avoid
cycles.

4..4 Implementation of the Prototype

The prototype to test our ideas on debugging operators was originally
developed on a Xerox 1109 Lisp machine. It requires some 2000 lines of
Common Lisp in about 75 functions. We have now ported this implemen-
tation on the Macintosh using Macintosh Allegro Common Lisp.

This environment has been used for teaching and for debugging small
programs. It has been very useful in these cases but it could not be used for
debugging “big” programs mainly because we only deal with a small subset
of a “real” language and we have not implemented type checking. But

3The number of arguments is not always the same due to currying. Therefore, the
number of parameters of that function should not be used for such a display.

4We use the name of the local function suffixed by a unique integer for the current
display.

A DEBUGGING ENVIRONMENT FOR LAZY FUNCTIONAL LANGUAGES 15

this prototype has established a methodology and identified the important
points that should be adressed in an “industrial” lazy functional language
environment.

When a break point is encountered, some parts of the script is under-
lined and/or made bold. This operation is implemented using the resident
text editor Lisp functions that perform these operations. The information
needed to operate on the text is kept in the nodes of the graph. For ex-
ample, in the expression 20 * brkBef(3 + 4) the node that describes the
constant 20 keeps track of the window and the positions in which it ap-
pears; this is also true for 3 and 4, and the applications of * and +. This
information is gathered by the compiler throughout the script.

Although the graph is continually changed, the positions in the original
text of the script or the starting expression of the evaluation is passed
along when an instantiation occurs, but it is destroyed when an operator
is applied.

5. Further work

Our prototype only deals with a subset of Haskell but it has shown the
principles of the break operators. The first extension would be to deal with
all the language constructs; we are convinced that the basic approach would
be the same but perhaps some adjustments would be needed for the list
comprehensions and the different constructors.

The current implementation shows the expressions in the Haskell syntax
but it can often display very large structures and it would be important to
find a way to shorten this information. A simple way would be to define
the equivalent of *print-level*, *print-length* found in Common Lisp
to control until what level nested expressions are printed and how many
elements to be printed at each level.

Following Lieberman[5], it would be interesting and possible to go back
in the history of the reduction after a break point. It would seem that this
would be very expensive in time and space, but as functional languages are
side-effect free, this overhead could be manageable.

6. Conclusion

We have presented in this paper the use of break operators for debugging
functional languages; they are simple to use and they integrate well syntac-
tically and semantically in the underlying language. This mechanism keeps
the properties of the lazy evaluation and can be used without any knowl-
edge of the implementation or the evaluation order. At a break point, the

16 LAPALME AND LATENDRESSE

current expression is shown in terms of the syntax of the original program
and relations are made between this expression and the program script. We
have also introduced a dynamic disabling mechanism to reduce the number
of steps to be seen before arriving at the error. These principles and ideas,
implemented within our prototype, have been shown to be quite useful and
efficient and do not require great modifications to an implementation based
on supercombinators.

References

1. Augustsson, L. A compiler for Lazy ML. In Proceedings of the ACM
Symposium on Lisp and Functional Programming (1984) 218–227.

2. Hall, Cordelia V. and O’Donnell, John T. Debugging in applicative
languages. Journal of Lisp and Symbolic Computation, 1, 1 (1988).

3. Hudak, P. and Wadler (editors), P. Report on the Programming Lan-
guage Haskell, A Non-strict Purely Functional Language (Version 1.1).
Technical Report, Yale University, Department of Computer Science
(August 1991).

4. Latendresse, M. Un environnement de mise au point de programmes
écrits dans un langage fonctionnel à évaluation paresseuse. Master’s
thesis, Département d’informatique et de recherche opérationnelle, Uni-
versité de Montréal (1990).

5. Lieberman, Henry. Steps towards better debugging tools for Lisp. In
Proceedings of the ACM Conference on Lisp and Functional Program-
ming (1984) 247–255.

6. Milner, R. How ML evolved. Polymorphism, 1, 1 (1983) 1–6.

7. Milner, R., Tofte, M., and Harper, R. The Definition of Standard ML.
MIT Press (1990).

8. Peyton-Jones, S. L. Directions in Functional Programming Research.
Technical Report INDRA note 1575, Department of Computer Science,
University College, London (1985).

9. Peyton-Jones, S. L. The Implementation of Functional Programming
Languages. Prentice-Hall (1987).

10. Runciman, C. and Toyn, I. Adapting combinator and SECD machines
to display snapshots of functional computations. New Generation Com-
puting, 4 (1986) 339–363.

A DEBUGGING ENVIRONMENT FOR LAZY FUNCTIONAL LANGUAGES 17

11. Snyder, Robin M. Lazy debugging of lazy functional language. New
Generation Computing, 8, 139-161 (1990).

12. Turner, D. A. A new implementation technique for applicative lan-
guages. Software - Practice and Experience, 9 (1979) 31–49.

7. Appendix: Syntax of our language

For our prototype, we chose a small subset of Haskell but that is sufficient
to include all implementation problems dealing with the run-time aspects
of a lazy functional language.

The program is checked for syntax errors but we take for granted there are
no type errors. In fact, we do not even accept type definitions. Of course,
a full implementation would have to deal with this, but as it is done before
run-time, no modification would be needed for our proposition. For type
checking, the break operators are simply polymorphic functions of the same
type as the identity function.

A function is written as recursive equations separated by ;. For simplic-
ity, our lexical analyzer does not deal with the layout rules. For example:

gcd a b | a == b = a;
gcd a b | a > b = gcd (a-b) b ;
gcd a b | a < b = gcd a (b-a)

In each equation, the left hand side gives the name of the function gcd, the
formal parameters a and b and the guard after ‘|’ giving the condition to
use this right hand side of the equation. No pattern matching is allowed
for the parameters. Expressions are arithmetic, boolean or characters con-
structed with the usual operators. List are built using either the cons (:) or
brackets ([1,2,3] is equivalent to 1:(2:(3:[]))). Arithmetic sequences
like [1..5] can be used, sequences can also be infinite like [1..]. head
and tail are functions giving respectively the first element of a list or the
list after the first element is removed. Tuples are created by putting their
elements in parenthesis. Functions can be currified and local definitions
can be introduced by a where clause.

List or array comprehensions and sections were not introduced in the
language. No modules nor input/output request are permitted and we do
not provide any standard library of functions.

