
Automatic Insertion of Accents in French TextMichel SimardLaboratoire de recherche appliqu�ee en linguistique informatique (RALI)Universit�e de Montr�ealsimardm@iro.UMontreal.CA
AbstractAutomatic accent insertion (AAI ) is the problem ofre-inserting accents (diacritics) into a text where theyare missing. Unaccented French texts are still quitecommon in electronic media, as a result of a long his-tory of character encoding problems and the lack ofwell-established conventions for typing accented char-acters on computer keyboards. We present an AAImethod for French, based on a stochastic languagemodel. This method was implemented into a programand C library of functions, which are now commer-cially available. Our experiments show that Frenchtext processed with this program contains less thanone accent error per 130 words. We also show how ourAAI method can be used to do on-the-y accent in-sertions within a word-processing environment, whichmakes it possible to write in French without havingto type accents. A prototype of such a system wasintegrated into the Emacs editor, and is now avail-able to all students and employees of the Universit�ede Montr�eal's computer science department.1 IntroductionEven in this era of ashy, high-speed multimedia in-formation, unaccented French texts (i.e texts withoutdiacritics) are still routinely encountered in electronicmedia. Two factors account for this: �rst, the com-puter �eld has long su�ered from a lack of su�cientlywidespread standards for encoding accented charac-ters, which has resulted in a plethora of problems inthe electronic transfer and processing of French texts.Even now, it is not uncommon for one of the soft-ware links in an E-mail distribution chain to delib-erately remove accents in order to avoid subsequentproblems. Secondly, when using a computer keyboardthat is not speci�cally designed for French, keyingin French accented characters can turn out to be alaborious activity. This is a matter of both stan-dards and ergonomics. As a result, a large number ofFrench-speaking users systematically avoid using ac-cented characters, at least in informal communication.If this situation remains tolerable in practice, it isessentially because it is extremely rare that the ab-

sence of accents renders a French text incomprehen-sible to the human reader. Cases of ambiguity dononetheless occur: for instance, \Ce chantier fermea cause des emeutes" could be interpreted as \Cechantier ferme �a cause des �emeutes" (\This work-siteis closing because of the riots") or \Ce chantier ferm�ea caus�e des �emeutes" (\This closed work-site [morenaturally put, this work-site closure] has caused riot-s"). From a linguistic point of view, the lack of accentsin French simply increases the relative degree of am-biguity inherent in the language. At worst, it slowsdown reading and proves awkward, much as a textwritten entirely in capital letters might do.The fact remains, however, that while unaccentedFrench text may be tolerated under certain circum-stances, it is not acceptable in common usage, espe-cially in the case of printed documents. Furthermore,unaccented texts pose serious problems for automaticprocessing: NLP-based applications such as informa-tion retrieval, information extraction, machine trans-lation, human-machine conversation, speech synthe-sis, as well as many others, will usually require thatFrench texts be properly accented to begin with.Actually, for human readers, unaccented texts isprobably the most benign of a more general class of illtreatments to which French texts are subjected. Forexample, it is not uncommon for older programs thatare not \8-bit clean" to \strip" the eighth bit of eachcharacter, thus irreversibly mapping French charac-ters onto the basic ASCII set. When this treatmentis applied to an ISO-Latin text, `�e' becomes `i ', `�e'becomes `h', etc. Other programs will simply deleteaccented characters, or replace them with a uniquecharacter, such as a question mark. The texts thatresult rapidly become unreadable.All of the above factors prompted the initial in-terest in methods of automatic accent insertion (orAAI ). Of course, as standards such as Unicode (mul-tilingual character-coding standard) andMIME (mul-tipurpose Internet mail extensions) gain ground, theaccent legacy problem slowly disappears. The prob-lem of typing accents, however, is likely to remain.For this reason, we have become interested in meth-



ods that would perform automatic accent insertion on-the-y, in real time. It appears to us that such a toolwould be a valuable addition to any word-processingenvironment, equally useful for native and non-nativespeakers of French.In what follows, we �rst present a general auto-matic accent insertion method, based on a stochas-tic language model. This method was implementedinto a program called R�eacc, which is now commer-cially available through Alis Technologies1. We thenexamine how this method can be adapted to performaccent insertions on-the-y within a word-processingenvironment. As we go along, we describe the variousexperiments we designed to evaluate the performanceof the system in di�erent contexts, and present theresults obtained. Finally, we briey describe how aprototype \on-the-y accentuation" (OTFA) systemwas implemented within the Emacs text-editor.Although our research focuses on unaccentedFrench texts, we believe that our approach could beadapted to other languages that use diacritical marks,as well as to other types of text corruption, such asthose mentioned above. The AAI problem and thesolutions that we propose are also related to the moregeneral problems of word-sense disambiguation andspelling and grammar checking.2 Basic Automatic Accent InsertionIn its simplest form, the automatic accent insertionproblem can be formulated this way: we are given asinput an unaccented French text, in the form of a se-quence of unaccented words w1w2 : : : wn. To every oneof these input words wi may correspond any numberof valid words (accented or not) wi1 : : : wim: our taskis to disambiguate each word, i.e. to select the correctwords wiki at every position in the text, in order toproduce a properly accented text.An examination of the problem reveals that the vastmajority (approximately 85%) of the words in Frenchtexts carry no accents at all, and that the correct formof more than half of the remaining words can be de-duced deterministically on the basis of the unaccentedform. Consequently, with the use of a good dictionary,accents can be restored to an unaccented text with asuccess rate of nearly 95% (i.e., an error in accen-tuation will occur in approximately every 20 words).The problems that remain at this point mostly re-volve around ambiguous unaccented words, i.e. wordsto which more than one valid form may correspond,whether accented or not2.Obviously, for many such ambiguities in French, asimple solution is to systematically select the mostfrequent alternative. For instance, the most frequent1Alis Technologies: http://www.alis.com2As we will see later on, other problems are caused by un-known words , i.e. words for which no valid forms are known.

word in most French texts is usually the prepositionde, which turns out to be ambiguous, because there isalso a French word d�e, meaning either dice or thimble.If we simply ignore the latter form, we are likely toproduce the correct form over 99% of the time, evenin texts related to gambling and sewing! This generalstrategy can be implemented by determining a pri-ori the most frequent alternative for each set of am-biguous words in a dictionary, by means of frequencystatistics extracted from a corpus of properly accentedFrench text. Using this simple method, we achieve asuccess rate of approximately 97%, i.e. roughly oneerror per 35 words.Clearly, to attain better performances than these,an automatic accent insertion system will need to ex-amine the context within which a given ambiguousword appears, and then resort to some form of lin-guistic knowledge. Statistical language models seemto be particularly well �t to this task, because theyprovide us with quantitative means of comparing al-ternatives.We propose an automatic accent insertion (AAI )method that proceeds in two steps.1. Hypotheses generation: identify for each in-put word the list of valid alternatives to which itmay correspond;2. Candidate Selection: select the best candidatein each list of hypotheses.This is illustrated in Figure 1.2.1 Hypotheses GenerationHypotheses generation produces, for each word wi ofthe input, a list of possible words wi1 : : : wim to whichit may correspond. For example, the form poussemay correspond to either pousse or pouss�e; cote tocote, côte, cot�e or côt�e; the only valid form for fran-cais is fran�cais (with a cedilla), and ordinateur is itsown unique correct form. In theory, nothing precludesgenerating invalid as well as valid hypotheses at thisstage: for instance, for cote, also generate c�ot�e and�cote. But to limit the number of possibilities that thesystem must consider, hypotheses are produced usinga list of known French word-forms, indexed on theirunaccented version. On the other hand, when the hy-potheses generator encounters word-forms that it doesnot know, it simply reproduces them verbatim.2.2 Candidate SelectionOnce lists of hypotheses have been identi�ed for eachinput word, the best candidate of each list must beidenti�ed. For this, we rely on a stochastic lan-guage model, which can assign a score to any sequenceof words, corresponding to the probability that themodel generate this sequence. Given an input se-quence of words w1w2 : : : wn, and for each word wi



Mais

Maïs

la

là

cote

coté

côte

côté

, une fois rejointe...

, une fois rejointe...
Mais la

côteMaïs là

cote

coté

côté

Mais, la cote une fois rejointe, il nous eut fallu retrouver l’escale.

Input text:

Hypotheses generation:

Candidate selection:

Figure 1: Automatic accent insertion methodin the sequence, a list of hypotheses (wi1; : : : ; wim),our goal can be reformulated as �nding the sequenceof hypotheses w1k1w2k2 : : : wnkn that maximizes theoverall likelihood of the output sequence.The stochastic model we use is a Hidden MarkovModel (HMM), within which a text is viewed as the re-sult of two distinct stochastic processes. The �rst pro-cess generates a sequence of abstract symbols. In ourcase, these symbols correspond to morpho-syntactictags, e.g. \common noun, masculine-singular", \verb,present indicative form, third person plural". In anN -tag HMM, the production of a tag depends on theN � 1 preceding tags, so that the probability of ob-serving a given tag ti in a given context follows a con-ditional distribution P (tijti�N : : : ti�1).Then, for each tag in this �rst sequence, a secondstochastic process generates a second symbol: in ourcase, these symbols correspond to actual words in thelanguage.The parameters that de�ne the model are:� P (tijhi�1): the probability of observing tag ti,given the previous N � 1 tags (hi�1 designatesthe series of N � 1 tags ending at position i� 1);� P (wijti): the probability of observing word wigiven the underlying tag ti.Given these parameters, the probability of generat-ing some sequence of words w = w1w2 : : : wn can beevaluated. If T is the tag alphabet, and Tn denotesthe set of all possible sequences of n tags of T , then:P (w) = Xt2Tn nYi=1P (tijhi�1)P (wijti)The direct calculation of this equation requires anumber of calculation that is exponential in the lengthof the sequence. However, there exists an algorithm

that computes the value of P (w) in polynomial time(Rabiner and Juang, 1986).To �nd the sequence of hypotheses that maximizesthe probability of the text, each individual combina-tion of hypotheses is examined. Because the numberof possible combinations grows exponentially with thelength of the text, we will want to segment the textinto smaller pieces, whose probabilities can be maxi-mized individually. Sentences are usually consideredto be syntactically independent, and so we may as-sume that maximizing the probability of each sentencewill yield the same result as maximizing the wholetext. Even within sentences, it is sometimes possibleto �nd subsegments that are \relatively" independentof one another. Typically, the inner punctuation ofsentences (semicolons, commas, etc.) separates seg-ments that are likely to be independent of one an-other. In the absence of inner punctuation, it is stillpossible to segment a sentence around regions of \lowambiguity".Our AAI method relies on a heuristic segmentationmethod, which cuts up each sentence into a number ofsegments, such that the number of combinations of hy-potheses to examine in each segment does not exceeda certain �xed threshold, while minimizing dependen-cies between segments. This segmentation strategye�ectively guarantees that the accent-insertion can bedone in polynomial time. But we sometimes end upsegmenting the text at \sub-optimal" locations. Thiswill have consequences on performance, as we will seein the next section.Segments are processed in a left-to-right fashion. Inpractice, we have realized that one way of minimizingthe negative impact of sub-optimal segmentations isto prepend to each segment the last few words of theprevious segment, as output by the AAI system. Thisseems to have the e�ect of \priming" the model. Theprepended words are then simply dropped when the



�nal result is pieced together.2.3 ImplementationThe method presented in the previous section wasimplemented in a program called R�eacc. This pro-gram, given a hypotheses generator, the parametersof a HMM and an input, unaccented French text, pro-duces an accented version of that text on the output.The hypotheses generator we used was producedfrom a list of over 250 000 valid French words, ex-tracted from our French morpho-syntactic electronicdictionary. Such a large dictionary is probablyoverkill, and in fact, it may even be the case thatit uselessly slows down processing, by proposing ex-tremely rare (although probably valid) words. (Theonly francophones we met that had heard of a l�e werecrossword puzzle addicts.)The language model used is a 2-tag HMM, basedon a set of approximately 350 morpho-syntactic tags.The parameters of the HMM were �rst estimated bydirect frequency counts on a 60 000 words, hand-tagged extract of the Canadian Hansard. The pa-rameters were then re�ned, using Baum-Welch reesti-mation (Baum, 1972), on a 3 million word (untagged)corpus consisting of equal parts of Hansards, Cana-dian National Defense documents and French pressrevues (Radio-France International).2.4 Performance EvaluationOne of the interesting properties of the AAI prob-lem is that the performance assessment of a givenprogram is a very straightforward a�air: all we needis a corpus of correctly accented French text, and a\de-accentuation" program. Performance can be mea-sured by counting the number of words that di�er inthe original text and its re-accented counterpart.For the purpose of our evaluation, we used a testcorpus made up of various types of text. It containsHansard, National Defense and RFI documents (dis-tinct from those used in training), but also UnitedNations documents, court transcripts, computer man-uals as well as some literary texts. The whole corpuscontains 57 966 words (as counted by the standard wcUNIX program).Apart from the hypotheses generator and the lan-guage model parameters, a number of parameters af-fect the performance of the program. The most im-portant of these is the maximum number of combina-tions per subsegment, that it used in the segmentationheuristic. In what follows, we refer to this parameteras S. The results obtained for di�erent values of S arepresented in Table 1. All tests were done on a Sparc-STATION 10 computer, with 32 MB of memory.A cursory look at the results reveals that there ismuch to be gained by allowing the system to work onlonger segments. However, beyond a certain limit, the

quality of the results tends to level o�, while the run-ning time increases radically. Depending on the con-text of application of the program and the resourcesavailable, it would seem that acceptable results can beobtained with S set at around 16 or 32. In this set-ting, the system will process anywhere between 10 000and 20 000 words per minute.It is interesting to look at where R�eacc goes wrong.Table 2 provides a rough classi�cation of accent-restoration errors made by the program on our testcorpus with S set at 16. The largest category of ac-centuation errors includes a rather liberal grouping oferrors that have a common feature: they are the resultof an incorrect choice pertaining to an acute accent ona �nal e. In most cases (although not all), this corre-sponds to an ambiguity between a �nite and participleforms of a verb, e.g. aime as opposed to aim�e. Thenext group of errors are those that stem from inad-equacies in the hypotheses generator { i.e. cases inwhich the generator simply does not know the correctaccented form. In most cases (nearly half), propernouns are involved, but, especially in more techni-cal texts, there are also many abbreviations, non-French words and neologisms (e.g. r�eam�enagement,s�eropositivit�e). The next category concerns a uniqueword pair: the preposition �a, and a, the third personsingular present indicative form of the verb avoir.2.5 Related WorkEl-B�eze et al. (1994) present an AAI method thatis very similar to ours. It also proceeds in two steps:hypotheses generation, which is based on a list of validwords, and candidate selection, which also relies on aHidden Markov Model. The main di�erence betweentheir method and ours is how the HMM is used toscore competing hypotheses. While we segment thetext into \independent segments" and maximize theprobability of these segments, their program processesthe text from left to right, using a �xed width \slidingwindow":� For each word wi, the hypotheses generator pro-duces a list of possible word/tag alternatives:(wi1; ti1); : : : ; (wik ; tik);� Candidate Selection proceeds by selecting a spe-ci�c pair (wij ; tij) at each position; the goal is to�nd the sequence of word/tag pairs whose prob-ability is maximum according to the model:nYi=1P (wiji jtiji)P (tiji jti�1ji�1 ; ti�2ji�2)� To avoid combinatorial problems, instead of com-puting this product for all possible sequences, thesystem �nds at each position i in the sequencethe pair (wij ; tij) that locally maximizes that part



Max. no. of Running time Total number of Average distancecombinations (seconds) errors (words) between errorsper segment (S) (words)2 68 821 704 85 560 1038 132 466 12416 169 441 13032 277 429 13464 429 425 136128 731 420 137Table 1: Results of AAI Experiments on 58K-word Test CorpusType of error Number of occurrences Percentage-e VS. -�e ending 171 38.8%Unknown words 111 25.2%a VS. �a 69 15.7%Other 90 20.4%Total 441 100.0%Table 2: Classi�cation of Accent Restoration Errors (S = 16)of the global computation within which it is in-volved: Pi � Pi+1 � Pi+2where Pi = P (wiji jtiji)P (tiji jti�1ji�1 ; ti�2ji�2).� These computations proceed from left to right, sothat the optimal tag found for position i will beused in the computation of the optimal word/tagpairs at positions i+ 1 and i+ 2.The experimental results reported in El-B�eze et al.(1994) indicate success levels slightly superior to ours.This may be explained in part by the use of a betterlanguage model (their HMM is three-tag, ours is two-tag). It must be said, however, that their test-corpuswas relatively small (in all, a little over 8000 words),and that the performances varied wildly from text totext, with average distances between errors varyingbetween 100 and 600 words.A method which exploits di�erent sources of infor-mation in the candidate selection task is described inYarowsky (1994b): this system relies on local context(e.g., words within a 2- or 4-word window around thecurrent word), global context (e.g. a 40-word window),part-of-speech of surrounding words, etc. These arecombined within a unifying framework known as de-cision lists. Within this framework, the system basesits decision for each individual candidate selection onthe single most reliable piece of evidence.Although the work described in Yarowsky (1994b)does address the problem of French automatic accen-tuation, it mostly focuses on the Spanish language.Furthermore, the evaluation focuses on speci�c am-biguities, from which it is impossible to get a globalperformance measure. As a result, it is unfortunately

not currently possible to compare these �ndings withours in a quantitative way.In Yarowsky (1994a), the author compares hismethod with one based on the stochastic part-of-speech tagger of Church (1988), a method which ob-viously has a number of points in common with ours.In Mr Yarowsky's experiments, this method is clearlyoutperformed by the one based on decision lists. Thisis most apparent in situations where competing hy-potheses are \syntactically interchangeable": pairsof words with identical morpho-syntactic features, orwith di�erences that have no direct syntactic e�ects,e.g. present/preterite verb tenses. Such ambiguitiesare better resolved with non-local context, such astemporal indicators. As it happens, however, whilesuch situations are very common in Spanish, they arerare in French. Furthermore, Mr Yarowsky's languagemodel was admittedly quite weak: in the absence ofa hand-tagged training corpus, he based his model onan ad hoc set of tags.3 On-the-y Automatic AccentInsertionAs mentioned earlier, the existence of unaccentedFrench texts can in part be explained by the lackof a standard keying convention for French accents:conventions vary from computer to computer, fromkeyboard to keyboard, sometimes even from programto program. Many users type French texts withoutaccents simply because they are unfamiliar with theconventions in a particular environment, or becausethese conventions are too complicated (e.g. hittingthree keys in sequence to type a single accented char-acter).



Clearly, in some situations, automatic accent inser-tion o�ers a simple solution to this problem: type thetext without accents, run an AAI program on the text,and revise the output for accentuation mistakes. Ofcourse, such a solution, if acceptable for one-time pro-duction of short texts, is not very practical in general.If a text is subjected to a number of editions and re-editions, or if it is produced cooperatively by severalauthors working in di�erent environments, then it mayneed to go through a series of local re-accentuations.This process, if managed by hand, is error-prone and,in the end, probably more laborious than typing theaccents by hand.If, however, the accents are automatically insertedon-the-y, as the user types the text, then accent re-vision and corrections can also be done as the textis typed. If such an on-the-y accentuation (OTFA)system is capable of producing acceptable results inreal-time, it may become a realistic alternative to themanual insertion of accents. In what follows, we ex-amine how this may be done.3.1 MethodHow does OTFA di�er from the basic AAI problem?In Section 2, the input was considered to be a staticand (hopefully) complete text. In OTFA, the text isdynamic: it changes with every edit operation per-formed by the user. Therefore, the OTFA methodthat is conceptually the simplest is to re-compute theaccentuation of the whole text after each edit, i.e. re-peatedly apply to the entire text an AAI method suchas that proposed earlier.Of course, such a method is impractical, mainly be-cause it will likely be computationally excessively ex-pensive. It is also overkill, because changes in oneregion of the text are unlikely to a�ect the accentu-ation of the text in more or less distant regions. Infact, if we use the AAI method of Section 2, changesin one location will have no e�ects outside the sen-tence within which the edit occurs, because sentencesare all treated independently. Because sentences arethemselves sub-segmented, it is tempting to think thatthe e�ect of a given edit will be even further restricted,to the segment of the sentence within which it takesplace. This, however, is not generally true, �rstly be-cause an edit is likely to a�ect the sub-segmentationprocess itself, and also because changes in one seg-ment can have cascading e�ects on the subsequent seg-ments, as the last words of each segment are pre�xedto the following segment as additional context.So a more practical solution is to process only thesentence within which the latest edit occurred. Thereare still problems with this approach, however. Whilethe user is editing a sentence, chances are that at anygiven time, this sentence is \incomplete". Further-more, although modern text-editors allow insertions

and deletions to be performed in any order and atany position of the text, in a normal text-editing con-text, given the natural tendency of humans to write ina beginning-to-end fashion, the majority of the editsin a French text will be left-to-right insertions at theend of sentences. This means that at any given time,the text to the left of the latest edit is likely to consti-tute relevant context for the AAI task, while the textto the right is likely not to be relevant. In fact, takingthis text into consideration could very well misleadthe AAI process, as it may belong to a completelydi�erent sentence.This suggests a further re�nement: after each edit,process only that part of the current sentence that liesto the left of the location where the edit took place.Also, it seems that there is no real need to take anyaction while the user is modifying a given word, andthat it would be wiser to wait until all edits on thatparticular word are �nished before processing it. Bydoing so, we will not only save computational time, wewill also avoid annoying the user with irrelevant accen-tuations on \partial" words. Notice, however, that de-tecting the exact moment when the user has \�nished"typing or modifying a word can be a tricky business.We will deal with this question in Section 3.4.One of the potential bene�ts of performing accen-tuation on-the-y, as opposed to a posteriori AAI, isthat the user can correct accent errors as they hap-pen. In turn, because accentuation errors sometimescascade, such on-the-y corrections may help the AAI\stay on the right track".If we want to capitalize on user-corrections, we willneed to:1. somehow distinguish \corrections" from othertypes of edits : the reason is that we don't wantto override the user's decisions when performingAAI. This question will also be dealt with whenwe discuss implementation details (Section 3.4).2. limit the scope of the AAIs to a small number ofwords around the location of the last edit : the usercan only correct the error that he sees ; in theory,the e�ect of AAI after each edit is limited to thecurrent sentence, but sentences come in all sizes.If a given \round" of AAI a�ects text too far awayfrom the site of the last edit, which is usually alsothe focus of the user's attention, then he is likelynot to notice that change. For this reason, itseems reasonable to restrict the actual scope ofthe AAI process to just a few words: intuitively,three or four words would be reasonable. Notethat this doesn't imply restricting the amount ofcontext that we provide the AAI with, but onlylimiting the size of the region that it is allowed tomodify.



To summarize, the OTFA method that we proposeessentially follows these lines:� OTFA is performed by repeatedly applying anAAI method (such as that of Section 2) on thetext.� AAI rounds are triggered every time the user �n-ishes editing a word.� The scope of AAI (which we call the AAI win-dow) is limited to a �xed number of words to theleft of the last word edited.� If this can be useful to the AAI process, more con-text can be given, in the form of additional wordsbelonging to the same sentence to the left of theAAI window (what we call the context window).3.2 Performance EvaluationThe ultimate goal of OTFA is to facilitate the editingof French texts. Therefore, it would be logical to eval-uate the performance of an OTFA system in thoseterms. Unfortunately, the \ease of typing" is a no-tion that is hard to quantify. In theory, typing speedwould seem to be the most objective criterion. Butmeasuring performance using such a criterion wouldobviously require setting up a complex experimentalprotocol. On the other hand, the number and natureof parameters involved prohibits a \theoretical" eval-uation in these terms.What we can reliably evaluate, however, is the ab-solute performance of an OTFA system, in terms ofthe number of accentuation errors, for a given editing\session". Such a measure gives us an intuitive ideaof the impact of the OTFA system on the \ease oftyping".We conducted a number of experiments along thisline, to evaluate how an OTFA system based on theAAI system of Section 2 would perform. All experi-ments were done by simulation, using the same corpusthat was used in Section 2.4. The editing \session" wesimulated followed a very simple scenario: the usertypes the whole test corpus, from beginning to end,without typing accents, without making errors, andwithout correcting those made by the OTFA system.As was the case with the R�eacc program, severalparameters a�ect the quality of the results and thecomputation time required. The only parameter thatis speci�c to our OTFA method, however, is the sizeof the AAI window. This parameter, which we referto asW , is measured in words. We conducted distinctexperiments with various values for W , the results ofwhich are summarized in Table 3. In all of these ex-periments, the segmentation factor S was set at 16.The �rst conclusion that we can draw from Table 3is that there is much to be gained in using an AAIwindow of more than one word: setting W = 2 al-lows to cut down the number of errors by almost 60%.

Performance quickly levels o�, however, so that near-optimal results are obtained with a three- or four-wordwindow. This is encouraging, because it seems reason-able to assume that the user can e�ectively monitor awindow of that size, and therefore detect accentuationerrors when they occur.Another point that is very encouraging, and per-haps surprising, is that with W = 3, the performanceof our OTFA system rivals with that of the basic AAIexperiments reported in Section 2.4. One possible ex-planation is that because the OTFA works with onlya small number of words at each round (i.e. only thewords in the AAI window), the system never has morethan S = 16 combinations to examine, and thereforenever needs to segment sentences into smaller pieces.In the end, both ways of proceeding are probablymore or less equivalent, although more experimenta-tion would be required to determine this for sure. Themajor di�erence, of course, is that since OTFA recom-putes accentuation with every new word, its compu-tational cost is accordingly higher. However, as seenin Section 2.4, our AAI system can process 20 000words per minute. Since very few typists can entermore than 100 words per minute, even a straightfor-ward OTFA implementation should be able to handlethe required computations in real-time.3.3 User-feedbackWe mentioned earlier that one of the expected bene�tsof OTFA, as opposed to applying AAI on a text a pos-teriori, is that the user can spot accent errors as soonas they happen, and correct them right away. In fact,we believe that this form of user-feedback can even befurther exploited, to improve the performance of thesystem itself. As pointed out in Section 2.4, about aquarter of AAI errors are caused by unknown words,i.e. words in the correctly accented version of the textwhich are unknown to the hypotheses generator. Thissuggests an easy way of exploiting user-feedback: sys-tematically add to the hypotheses generator all user-corrected words whose form is unknown.In principle, if we add such a mechanism to ourOTFA system, and if the user corrects the AAI er-rors as soon as they happen, unknown words will belexicalized right after their �rst appearance, and thesystem should only make one error per unknown word.In preliminary experiments with this idea, the averagedistance between errors passed from 138 to 156 words,a reduction of almost 12% on the total number of er-rors. Our test corpus being heterogeneous by design,unknown words do not repeat very often. We suspectthat even better improvements would be observed onhomogeneous texts of similar size.This idea of exploiting user-feedback to modify theparameters of the OTFA dynamically can actually bepushed further. One of the current problems with



AAI window (W ) Total errors Average distance(words) between errors(words)1 1125 522 461 1263 420 1384 417 1398 417 13916 417 139Table 3: OTFA Simulation Resultsour OTFA system is its sometimes annoying tendencyto systematically select the most frequent alternativewhen confronted with syntactically interchangeablewords. For example, the two French words cote andcôte have similar morpho-syntactic features (commonnoun, feminine singular) and so, from a grammaticalpoint of view, are totally interchangeable. It so hap-pens, however, that in the language model's trainingcorpus, the second form, which is highly polysemous,is much more frequent. Therefore, the OTFA will sys-tematically produce that form rather than the other.If the user of the system is writing about the stockmarket for example, he is likely to want to use the�rst form cote, and therefore to react negatively tothe system's insistence on putting a circumex accentwhere none should appear.To solve this problem, some form of dynamic lan-guage modeling is required. We have begun experi-menting with an approach initially proposed by Kuhnand Mori (1990) to solve a similar problem in speechrecognition applications. Essentially, they suggest us-ing local context to estimate the parameters of a un-igram Markov model, and to use this model in con-junction with the static HMM to evaluate competingalternatives. Preliminary results with this approachare encouraging, although much work remains to bedone.3.4 ImplementationAs mentioned earlier, the AAI method presented inSection 2 has been implemented as a program and Cfunction library. Based on this implementation, a pro-totype OTFA system was developed and integrated tothe Emacs text-editor. Although Emacs is not gen-erally viewed as a true word-processing environment,it was a natural choice for prototyping because of itsopenness and extendibility.In our implementation, the user of Emacs has accessto a special editing mode called R�eacc-mode (techni-cally speaking, a minor-mode). When in this mode,the user has access to all the usual editing functions:he can move the cursor around, insert, delete, etc.The main di�erence with the normal \fundamental"mode is that now, accents are automatically inserted

as words are typed, without the user having to explic-itly type them.The implementation follows the general lines of theOTFA method presented in Section 3.1: every timea new word is inserted, the system identi�es the AAIwindow, submits the words that fall within this win-dow to the AAI system, and replaces the content ofthe window with the newly accented words.In practice, Emacs and the AAI program run asseparate processes, and communicate asynchronously:when a new word is typed, Emacs sends the AAI win-dow to the AAI process, along with other relevantinformation (context, position, etc.), and returns thecontrol to the user. The AAI program processes the\accentuation request" in the background, and sendsthe results back to Emacs as soon as they are ready.When this happens, Emacs interrupts whatever it wasdoing, and replaces the original contents of the AAIwindow with the newly arrived words. This way, user-interaction is not signi�cantly slowed down by the AAIprocess, because time-consuming computations typi-cally take place during the editor's idle time, betweenkeystrokes.It is the editing process' responsibility to initi-ate AAI rounds, and therefore to determine when anew word has been typed. After experimenting withvarious strategies, we opted for a relatively simplemethod, based on the possibility to mark individualcharacters of the text with speci�c \properties" inEmacs. When words are processed by the AAI pro-gram and re-inserted into the text, they are systemat-ically marked as auto-accented. By contrast, charac-ters typed by the user do not carry this mark. Everytime the user types a space or newline character, weexamine the word immediately preceding the cursor:if all its characters are unmarked, then a new AAIround must be initiated.We mentioned earlier that it was important for anOTFA system not to override the user's decisions.Two situations are particularly important to consider:when the user manually types an accent within a newword, and when the user corrects the accentuation of aword. In both cases, it is undesirable that the OTFAmodify the words in question. The character mark-



ing capabilities of Emacs are also used to detect thesesituations. The �rst case (new word with accents)will be identi�ed easily by the presence of accentedcharacters within an unmarked word. The second sit-uation (accent corrections) is more di�cult to detect,but in general, a mix of marked and unmarked char-acters within a single word is a good indicator thatcorrections have taken place.When these two situations occur, not only do we notinitiate an AAI round, we also inhibit any further re-accentuations on these words, by marking their char-acters as user-validated. Words bearing this mark willnever be touched by AAI. This type of marking is notlimited to user-inserted accents and user-corrections:when the user turns R�eacc-mode on, all existing text isinitially marked that way. Later on, when AAI roundsare initiated and the system locates the AAI window,all text outside this window is also marked as user-validated. This way of proceeding, while allowing theOTFA system to do its work during simple text inser-tions, limits the possibility of \unpleasant surprises"when more complex interactions take place (deletions,corrections, cut-and-paste operations, etc.).4 ConclusionWe have presented a method for automatically insert-ing accents into French text, based on a stochasticlanguage model. This method was implemented intoa program and C library of functions, which are com-mercially available from Alis Technologies. We havealso shown how this method can be used to do on-the-y accent insertions within a word-processing en-vironment. A prototype OTFA system was also im-plemented and integrated into the Emacs editor.Text processed with our system contains less thanone accent error per 130 words on average, regardlessof whether the system is used on its own or withinan OTFA environment. On a Sun SparcSTATION10 computer, with 32 MB, the system will processapproximately 20 000 words per minute. Within theEmacs OTFA prototype, because AAI is performedasynchronously, the performance of the editor itself isnot a�ected, and accents are inserted faster than thistypist can type3.The program has been made available to studentsand employees of the Universit�e de Montr�eal's com-puter science department, and initial feedback hasbeen positive. We are currently examining the pos-sibility of integrating our OTFA method to a \real"word-processor, such as Microsoft Word.AcknowledgmentsI am greatly indebted to Guy Lapalme, George Fosterand Pierre Isabelle for their invaluable advice and con-3These performance �gures were obtained with a segmenta-tion factor S set at 16.

structive comments, as well as to Elliott Macklovitch,for helping me translate my thoughts into readableEnglish. Many thanks also go to all the membersof the RALI who contributed to the development ofthe R�eacc system, as well as Fran�cois Yergeau of AlisTechnologies.ReferencesL. E. Baum. 1972. An Inequality and AssociatedMaximization Technique in Statistical Estimationsof Probabilistic Functions of Markov Processes. In-equalities, 3:1{8.Kenneth W. Church. 1988. A Stochastic Parts Pro-gram and Noun Phrase Parser for UnrestrictedText. In Proceedings of the Second Conference onApplied Natural Language Processing. ACL.Marc El-B�eze, Bernard M�erialdo, B�en�edicte Roze-ron, and Anne-Marie Derouault. 1994. Accen-tuation automatique de textes par des m�ethodesprobabilistes. Technique et sciences informatiques,13(6):797{815.Roland Kuhn and Renato De Mori. 1990. A Cache-based Natural Language Model for Speech Recogni-tion. IEEE Transactions on Pattern Analysis andMachine Intelligence, 12(6).L. R. Rabiner and B. H. Juang. 1986. An Introduc-tion to Hidden Markov Models. IEEE ASSP Mag-azine, pages 4{16, Jan.David Yarowsky. 1994a. A Comparison of Corpus-based Techniques for Restoring Accents in Span-ish and French Texts. In Proceedings of the SecondAnnual Workshop on Very Large Corpora, Kyoto,Japan.David Yarowsky. 1994b. Decision Lists for Lexi-cal Ambiguity Resolution: Applications to AccentRestoration in Spanish and French. In Proceedingsof ACL-94, Las Cruces, New Mexico.


