ComparingPostGraphe with the RAGS architecture

Guy Lapalme
Département d’'informatique et de recherchermapionnelle
Universi€ de Montgal, CP 6128, Succ Centre-Ville
Montréal Quebec Canada, H3C 337
lapalme@iro.umontreal.ca

1 Presentation ofPostGraphe

For the past few years, we have studied the automatic generation of graphics from statistical data in the
context of thePostGraphe system [4, 3].PostGraphe is given data in tabular form as might be found in

a spreadsheet; also input is a declaration of the types of values in the columns of the table. The user then
indicates the intentions to be conveyed in the graphics (e.g. compare two variables or show the evolution of
a set of variables) and the system generates a repdgK Wwith the appropriate PostScript graphic files.
PostGraphe also generates an accompanying text.

The input toPostGraphe consists of special annotations followed by the raw data. See figure 1 for an
example of their use and figure 2 for an example of the output generated. The input annotations indicate
the names, the description and the types of the variables, some of which may be of special interest to
the user. There is also an indication of how to determine the relational keys for the data and a series of
predicates describing the writer’s intentions. The justification for these annotations and their Prolog syntax
are presented in detail in [3]. This format corresponds to columns in a spreadsheet having as first elements
the name of the variable, as second its type, and as third an indication if the variable can be a key or not; the
rest of the columns are the data values of the variable.

In order to recasPostGraphe within the RAGS architecture, one should first pay a close attention to
the following:

types which associate a set of properties and a unit to every variable of the input. The properties are
organized as a multiple inheritance graph divided into a number of sub-graphs, each corresponding
to a specific feature: organization (hominal, ordinal, quantitative), domain (enumeration, range,
...), temporal (month, year, ...), format (integer, real, ...), measurements (distance, duration, ...),
and specific objects (countries,.). Units are organized in a parallel inftance graph.

relational keys which are similar to the notion of the same name in relational databases. They help de-
termine which variables depend on which others. They are also used for ordering variables in some
graphics so that the more important ones (usually the keys) are given the more visible positions.

writer’s intentions describe what to say and up to a certain point, how to say it. This information is orga-
nized in lists that correspond to sections of the report. Intentions are constraints on the expressivity
of the chosen text and graphid@ostGraphe tries to find the smallest set of graphics that covers the
writer's intentions. The following basic intentions are covered in our model;ptasentationof a
variable, thecomparisonof variables or sets of variables, tlegolutionof a variable along another
one, thecorrelation of variables and thédistribution of a variable over another one. Some of these
intentions are further divided into subjective subtypes.

data(% names of the variables
[ann ee,compagnie,profits],
% 2-description of variables
[ann ee,compagnie,profits],
% 3- types of the variables
[ann ee/[symbolique],
etiquette,
dollar/[pluriel_de(profit)]],

[ann ee,compagnie,profits],

% [years, companies, profits]
% [years, companies, profits]

% year/[symbolic]
% label

% dollar/[plural_of(profit)]
% 4-description of types of variables

% [years, companies, profits]

% 5- data of special interest to the user (none in this case)

[]

% 6- candidates for relational keys

[ann ee,compagnie],

% 7- non-candidates for relational keys

[profits],

% 8- the writer's intentions

[% section 1
[presentation(ann ee),
presentation(compagnie),
presentation(profits)],

% section 2

[comparaison([profits],[compagnie]),

evolution(profits,ann

% the raw data
[[1987,'A",30],
[1988,'A’,35],
[1989,'A’,40],
[1990,'A’,35],
[1987,'B",160],
[1988,'B’,165],
[1989,'B’,140],
[1990,'B’,155],
[1987,'C’,50],
[1988,'C’,55],
[1989,'C’,60],
[1990,'C’,95]))).

% [years, company]
% [years, companies, profits]
% presentation(year)

% presentation(company)
% presentation(profits)

% comparison([profits],[year])

% evolution(profits,year)

Figure 1: Example of input tBostGraphe

Nouvelle section (3 intentions traiter).

(New section: (3 intentions to procegs)

nouvelles intentions: psentation de ame. pesentation de compagnie.ggentation de profitshiéw inten-
tions: presentation of year. presentation of company. presentation of profits

year | 1987 1988 1989 1990
company | profits profits profits profits

A 30 35 40 35
B 160 165 140 15%
C 50 55 60 95

[Schéma:table]. présentation de ame (100). peSentation de compagnie (100).epentation de profits
(100).fresentation of year(100). presentation of company (100). presentation of profits) (100).

Nouvelle section (2 intentions traiter).

(New section: 2 intentions to proceps

nouvelles intentions: comparaison de profits entre compagu@@ution de profits par rappoatanree. few
intentions: comparison of profits between companies. evolution of profits by year

180

rofits B
- /\/ P

120

rofits C
) P

60

rofits A
20 /\ profi

1987 1988 1989 1990
year

[Schéma: curved. comparaison de profits entre compagnie (68jolution de profits par rappos anree
(95).
[Schema: evolutiond. évolution de profits par rapport a année (100).

Les profits de la compagnie B se situant55 comparativemerat 60 en 1987. Les profits de B sont plus
elevés que les autres compagnies en 19@anipany B'’s profits are 155 compared to 160 in 1987. B’s
profits are higher than the ones of other companies in 1990.

Figure 2: Report generated BpstGraphe from input of figure 1. English translations given heretimg
form) were not generated by the system.

comparison([A,B],[X]) columns3 80 [K's] AcYs,BeYs
comparison([Y],[X]) barsl 100 [X,Y]
evolution(A, X) curve2 100 [XYs] A€Ys

Table 1: Inference table excerpt

PostGraphe uses a schema-based planning mechanism to generate both text and graphics. The planner
uses the types and values of the data as well as the relational keys but it is mainly goal-driven. Because
we have decided to use text and graphics for every message, planning is done in 2 phases: the graphical
schemas are chosen and then the textual schemas are adapted to the contents and structure of the graphics.
This separate planning of text and graphics might be questionned because it is often thought and said in
the multimedia generation folklore and in some graphic generation texts that to obtain a good interaction
between text and graphics, that text should give informations that the graphics does not show. But Corio [1,
2] observed that most often the text merely reinforces what already appears in the graphic. For example,
29% of texts associated with a comparison intention, there is a mention of the highest value as to say to the
reader: “Yes, what you see in this graphic is really what is important”.

From this information, our system determines which schemas best satisfy the writer’s intentions. It
starts from a set of intentions to satisfy; in doing so, no a priori ordering of the variables is given; all types
of schemas have been assigned a weight for each intention; we can thus build a global quality function to
be maximized. But instead of trying all groups of intentions to find the smallest subgroups of variables that
best covers the writer’s intentions, we use a set of heuristics.

We first find the intentions that are “compatible” so that each schema takes into account as many inten-
tions as possible while keeping each one “readable”. Then we check if each group is feasible and determine
the best schema to express it. This step is based on a table which associates the type of a variable with the
most efficient graphical methods to express it. The table entries are weighted, and the result of this phase is
a list of candidates sorted from the most to the least efficient for the current goals. Table 1 shows a 3-entry
excerpt from the table. The first entry indicates that¢bkimns3schema (the third schema dealing with
column graphs) satisfies the goal of compawngndB along X with efficiency80. The variableX and the
list of variablesYsare involved in the process adandB must be members ofs

The next step is the low-level generation of graphic primitives and text. If this stage determines that a
figure cannot be generated because of physical reasons, such as being either too large or not having enough
grey levels, the next best candidate is tested. This low level work is quite involved because it has to take
into account the 2-D constraints and the limitations of the media. For this we developed our own Postscript
generation system in Prolog to determine and get access to the exact position of each element (character,
line, axis, ...) of a generated graph. These informations ecessary for the references made within the
text part ofPostGraphe.

Finally, a post-optimization phase eliminates redundancies which can occur because the heuristics some-
times miss a compatible grouping of intentions.

Surface text generation is handled by a subsystem that w&eHx [1, 2] which captures the subtle
nature of the interaction between text and graphics. Before desialigx, we did a corpus study of 411
French texts associated with graphics from such diverse sources as “Tendances sociales” published every
three months by Statistics Canada, books on statistics, investment funds reports, governmental reports, etc.

Table 2 shows the levels oRAGS defined” representations that are use®astGraphe. We see that
currentlyPostGraphe is not so modular as would be desirable but the next section explains why this is the
case.

Level Abstract Concrete
RAGS | PostGraphe RAGS | PostGraphe
conceptual 4 | data, types, intentions
semantic 7 | schemas 8 | Prolog code
rhetorical 5.2.1| schemas 5.4 | Prolog code
document 6 | graphic selection rules IATEX and postscript
syntax 9 | text selection rules DCG rules

Table 2: Levels of representation usedPostGraphe with the defining section in [5]

2 “ldeal” architecture for a report generator

An ideal architecture of a multimedia report planner could be casRifGS term” as follows using the
terminology of figure 1.1 of [5].

e content determination

e medium selection

e sentence planning / graphic planning
e text realization / graphic realization

This way of presenting the steps is too simple because it does not take into account the links that occur
between texts and graphics which are of the utmost importance in a report. In long reports, ordering and
structure are most important: sequencing of information can be temporal (e.g. by season in a business
report), geographical (e.g. unemployment statistics by region) or by content. When less information is given,
links between the informations become more important because they alone determine the organization of
the report. For example, a short two pages report will deal with only one topic but the layout of the data on
the two pages becomes more important because it is the only visible structure.

There are many possible types of links between units of a report, the most obvious being the one which
links an explanation with a graphic: the graphic being used for showing an overview and the text to pinpoint
some important facts.

So now the problem is to determine where in this ideal pipeline would fit exactly the choice of a type
of graphic. One would expect that it should be done between the medium selection and the final realisation.
But this choice does not occur at a single place because for selecting the best graphic, one must know the
medium, the structure of the report and the realisation constraints. One should know if we are dealing with
a graphic alone, a combination of a text and a graphic; some graphics combine themselves better to give
a better report organisation and some physical constraints must also be taken into account: starting from
how many columns should a bar chart be transformed into a curve? So we see that the modular pipeline
architecture must be revisited at least to find a way of informing the different modules of global constraints
that must be taken into account. It should be possible to find a way of “backtracking” in the case of a choice
that would eventually be not appropriate.

3 “Realistic” architecture for a report generator

In PostGraphe, we devised a set of heuristics to try to guess early what will eventually be good decisions:
for example, we associate a size with each graphic (curves are quite compact while tables take more space).

5

v v

Data Input -
Type processing L v
Ilﬂ--
Planning
RIEAY
Graphic & text
realisation IRININAY

Figure 3: ARAGS view of the PostGraphe system. The labels for tHRAGS representation refer to the
following: | = conceptual; Il = semantic; Il = rhetorical; IV = document; V = syntactic

Although, the exact size is only known after the final realisation, it is useful to have an approximation during
the planning phase. Unfortunately, the use of heuristics distributes the knowledge of a module and thus can
be harder to maintain. For example, if we modify the realization of a type of graphics, then one must check
the consequences within the heuristics about it in the other moduld2osk&raphe, we also decided to

skip the medium selection module and to always generate both a text and a graphics, but this choice can only
be justified in our limited research context where we want to explore the integration of text and graphic. But
the content of either text or graphic can depend on the other. For the realizer, we tried using existing graphic
rendition systems such a6Lisp-Stat or the graphics primitives oRTpX but we realized that many high

level choices depend on low-level details such as the number of colors available or the exact positionning
of textual labels in the graphics. By implementing our own postscript generator, we were able to integrate it
within our decision process, give better heuristics and have a possibility of backtracking in the case of major
difficulty.

4 PostGraphe vstheRAGS architecture

PostGraphe implementation is about 4500 lines of Prolog divided into the following five main modules

for the graphic generation. In order to measure the relative importance of each module, numbers have been
added to give the approximate number of lines in each. Figure 3 give an overall view of the process and the
perceived importance of each type of representation definBABS.

Data input (250) reads the input data such as shown in figure 1 and applies some simple transformations to

6

speed up further processing. The data is quite analogous {odiherete Conceptual Representation
of RAGS.

Type processing (150)involves the inheritance tree walking predicates in order to find all the properties
associated with each object. This process, which builds on the data of the previous step, does not
seem to be addressed by the current definitioRAGS.

Planning (300) is the heart of the system and its implementation can be seen as the processhumofete
Rhetorical Representatiorit is further divided into four parts:
Grouping of intentions is a heuristic that combines intentions in a smaller number of graphics.

Evaluation of the composition of the combined intentions using different schemas in order to find
the most appropriate one.

Checking and realisation that the proposed graphics are indeed feasible
Postoptimisation possibly combines the resulting graphics

Schemas (900)are data used by the planning step. This is a forr@@fcrete Syntactic Representation

Graphic rendition system (2000) is quite involved for reasons given above and mapsbeument Ab-
stract Representatioto aDocument Abstract Representation

Utilities (1000) are not strictly addressed BRAGS but would certainly be necessary in order to implement
the operations on the whiteboard.

The text generation part is essentially a realizer of about 4300 lines of Prolog that implements a set of
text selection rules that were obtained from a corpus analysis[2, 1]. This corresponds to the mapping of the
Abstract Syntactic Representatit;mthe Concrete Syntactic Representation

5 General comments

This exercise of a rational reconstruction usR®GS has been instructive because it forced us to reconsider
some points that had more or less taken for granted. But it also raised some important poiniAbsut
itself:

e how useful is an NLG framework if it does not address the processing steps? for the moment, the
description oRAGS is at a very high (often meta) level of abstraction.

e how is backtracking dealt with? on one hand, there seems to be some possibility of having partially
specified structures but, on the other side, the whiteboard seems to freeze some choices.

e how should medium selection be addressed ?

But the team oRAGS is to be congratulated for putting out such a work in a domain where even the input
is not always well specified.

References

[1] M. Corio. Sélection de l'information pour lag€ration de texte ass@cé un graphique statistique.
Master’s thesis, Bpartement d'informatique et de rechercheragionnelle, Universit’de Montgal,
1998.

[2] M. Corio and G. Lapalme. Generation of texts for information graphicg.thrEuropean Workshop on
Natural Language Generation, EWNLG’98ages 49-58, Toulouse, May 1999.

[3] M. Fasciano. Gérération inegrée de textes et de graphiques statistiquB&D thesis, Universitde
Montréal, 1996.

[4] M. Fasciano and G. Lapalme. Intentions in the coordinated generation of graphics and text from tabular
data.to appear in Knowledge and Information Systepemge 33p., Sept 1999.

[5] The RAGS project. Towards a reference architecture for natural language generation systems. Tech-
nical Report http://www.itri.brighton.ac.uk/projects/rags, ITRI, University of Brighton and Division of
Informatics, University of Edinburgh, 1999.

Copies of documents [1] thru [4] can be obtained at the following URL.:

http://www.iro.umontreal.ca/ scriptum/scriptum-english.html

