
A Prolog implementation of the

Functional Uni�cation Grammar Formalism

Massimo Fasciano

Guy Lapalme

D�epartement d�informatique et de recherche op�erationnelle

Universit�e de Montr�eal

C�P� ����� Succ� A

Montr�eal� Qu�ebec� Canada� H�C �J	

e
mail� ffasciano�lapalmeg�iro�umontreal�ca

March �� ��

Abstract

This paper compares the use of Lisp and Prolog for the implementation of a func�

tional grammar uni�cation system� To achieve this comparison� we have taken as a
starting point Michael Elhadad�s FUF system� which is written in Lisp and produced

a much smaller and more e�cient Prolog version �PFUF� retaining many of FUF�s

essential features� Our approach is based on a precompilation scheme that reduces

most of the runtime overhead�

� Introduction

Since its introduction in the early ���s �Kay��� Kay���� the functional uni	cation grammar
formalism has rapidly gained acceptance in the 	eld of text generation �M����

Functional uni	cation grammars display the following characteristics� which separate
them from the standard context�free models such as the Prolog DCG formalism �see �GM���
for details�

� The use of features �gender� number� etc� � � to constrain rule selection

� The use of �exible constraints �patterns to specify the order of the terminals in the
linearized form �natural language sentence

� Automatic uni	cation of sub�constituents �no explicit recursive calls in the grammar
itself

Structural grammars such as the Prolog DCG use 	xed�arity terms to represent functional
structures �sets of features
 Each feature is identi	ed by its position within a term
 This
approach has two major drawbacks� 	rst� all features must be speci	ed because the terms
have a 	xed arity� thus producing large structures with �holes� representing missing features�
second� adding or removing a single feature in a rule requires updating many more rules
because this changes the arity of the term that holds the feature set

On the other hand� functional grammars name their features� so that they can be referred
to by name instead of by position
 Fixed�arity terms are no longer required

Specifying the order of constituents in a DCG�style grammar also brings its share of
problems
 Indeed� constituent order is speci	ed in too rigid a manner� which often forces
the user to explicitly list all possible orderings

Functional grammars solve this problem by introducing patterns
 A pattern is used
to specify constituent order in a less restrictive manner
 From a set of partial ordering
constraints imposed by the patterns� the system automatically calculates a possible linear
representation �NL sentence of the functional structure

The third interesting feature of some functional uni	cation grammar formalisms such as
FUF is the use of constituent sets �CSETs to specify recursive uni	cations

Structural grammars explicitly call the rules to use for recursive uni	cation
 The order
of these calls is also used to specify constituent order in the linear structure

Functional grammars usually have no use for explicit recursive calls� since the order of
the constituents is determined via a pattern
 In this case an automated approach is more
desirable
 Most of the time� the nature of a constituent indicates if it requires recursive
uni	cation
 The set of recursively�uni	ed constituents can also be speci	ed explicitly in the
grammar

This has the advantage of being more declarative than explicit recursive rules� thus
allowing the implementation to use di�erent control strategies
 Indeed� once it is known
that a constituent has to be uni	ed� the system can choose when to do it

� The FUF system

The FUF system �Elh��� was designed by Michael Elhadad at Columbia University
 It is
written entirely in Common Lisp� which makes it very portable

It uses functional structures �feature sets to represent the grammar and the user input

In fact� the whole grammar is a single feature set
 There are no rules per se� which makes it
very di�erent from most systems based on Prolog
 All of the features of conventional FUGs
�CSETs� patterns� disjunctions� the special value �any� are implemented� plus a number of
extensions �special value �given�

The management of �exible order constraints is implemented through the use of patterns
that allow �holes� of varying size
 See sections � and � for details

The basic inference engine of FUF controls the uni	cation process based on this simple
algorithm�

�
 The functional structure given as input is uni	ed with the whole grammar
 This process
�enriches� the input

�
 Each constituent in the enriched input is then recursively uni	ed with the whole gram�
mar if it is a member of the constituent set �CSET

The CSET is determined as follows�

� If the meta�feature cset is present in the top�level structure� then the list of con�
stituents that it speci	es becomes the CSET

� Otherwise� the CSET is the union of

� all the sub�constituents which contain the cat feature �category

� all the sub�constituents mentioned in the pattern meta�feature

The default option for CSET determination is almost always su�cient

� The PFUF prototype

Our prototype �PFUF was implemented in Prolog because we felt that it was a better im�
plementation language for a uni	cation system
 The result �cf
 section � is a smaller� more
e�cient system

PFUF is based on FUF� so it tries to stick as close to FUF�s formalism as is possible
within a Prolog framework
 Indeed� it also uses functional structures� order patterns and
automatic recursive uni	cations
 Nevertheless� some aspects of FUF have been changed to
take into the account the logic�based nature of our system
 For example� as can be seen in
section �� our system doesn�t put the whole grammar in a single monolithic structure
 It
uses Prolog rules to make it more modular

PFUF�s functional structure uni	er is based on �Boy��� with a number of extensions�
the most important being the use of alternatives �disjunctions within the grammar
 An
interesting discussion of the basic model can be found in �GM���

Our pattern uni	er closely resembles FUF�s
 Indeed� patterns are allowed to contain
holes of unspeci	ed size
 For example� to specify that the subject starts the sentence
and is followed somewhere in the sentence by a verb� you would use the following pattern�
�subject�����verb�����
 Later on� to add an object right after the verb� you just add an�
other pattern �without changing the 	rst one� �����verb�object�����
 To add an indirect
object at the end of the sentence� simply add �����iobject�
 The resulting pattern after au�
tomatic linearization would look something like �subject�����verb�object�����iobject�

The inference engine at the heart of our system tries to reproduce FUF�s behavior as
closely as possible
 Nevertheless� it is much simpler
 This is due to the format of our rules

Indeed� a PFUF grammar is a set of directly executable Prolog rules� capable of doing their
own uni	cations
 Thus� the inference engine�s role is very limited� it calls the rule associated
with the top level grammar� giving it the user�s request as input
 The grammar then enriches
�by uni	cation the input� and then control is transferred back to the engine �procedure call
returns
 The engine�s only real time�consuming job is to determine the constituents that
require recursive uni	cation and to call the grammar again with each of them as input
 The
advantages of this approach are that the inference engine is small and easily customizable
and that most of the work is done by very e�cient precompiled Prolog code in the rules�
instead of requiring a meta�interpreter

The simplicity and e�ciency of the runtime layer is due mainly to the precompiler �see
section �
�

� Example grammar

In this section� we give an overview of syntactic di�erences between FUF and our prototype
PFUF
 These di�erences are shown through excerpts of a small grammar �gr��l from
the FUF �
� distribution� which we translated to PFUF syntax
 Numbers between square
brackets have been inserted at key points in the code for easy reference

��� FUF

FUF �
� grammars are written as a Lisp list� which is assigned to the global variable
�u�grammar� �cf
 ���
 The format used to represent feature�value pairs is very com�
mon in Lisp systems� a pair is given as a ��element list �ex� �cat clause	 and pairs are
combined using standard Lisp lists to produce functional structures

In our opinion� the monolithic nature of FUF �
�� grammars �one big functional struc�
ture� makes them very hard to read

The grammar starts with an alternative between the top�level categories �clause� verb�
etc� � �
 Alternatives are represented via the alt meta�feature in a structure �cf
 �
�
 The
use of a feature to represent a disjunction is a little strange� but given the monolithic nature
of the grammar� it is unavoidable
 It does make the grammar even harder to read by intro�
ducing another level of parentheses

The reserved value none is used to specify that a feature has no value �cf
 ���
 The re�
served value given indicates that the feature must have been speci	ed in the input �cf
 ���

�FUF ��� introduces a way of de�ning grammars in a modular way with def�alt and def�conj� Named

disjunctions and conjunctions can be de�ned and are used in a grammar by using the syntax ��� name� and

��� name� respectively�

�defun gr� ��

�setq �u�grammar� � 	
�

���alt � 	�

�

��cat clause�

�process�type actions�

�prot ��alt �none ��cat np� �animate yes������

�goal ��alt �none ��cat np������ � 	��

�benef ��alt �none ��cat np������

�verb ��process�class actions�

�lex given��� � 	��

�alt voice ��index voice� � 	��

�� Voice active

���voice active�

�verb ��voice active���

�subject �� prot��

�object �� goal�� � 	��

�iobject �� benef���

�� Voice passive

��voice passive�

�verb ��voice passive���

�alt

�� Is there an explicit prot

�� in the input�

���prot none�

�by�obj none��

��prot given�

�by�obj ��np �� � prot������� � 	��

�� Arrange order of complements

�pattern �subject verb dots object dots�� � 	��

�alt verb�voice ��index �verb voice��

�� VERB VOICE ACTIVE

���verb ��voice active���

�alt dative

�� John gave Mary the book

���verb ��transitive�class bitransitive�

�dative�prep none���

�pattern �dots verb iobject object dots��� � 	��

�� John gives a book to Mary

��verb ��dative�prep given���

�dative ��cat pp�

�prep ��lex �� � � verb dative�prep����

�np �� � iobject����

�pattern �dots verb object dative dots��� � 	
��

�� Catch all for non�bitransitive cases

��verb ��dative�prep none�������

Figure �� FUF �
� version of the grammar

gram�CL	 ��

given�CL�verb�lex	� ���

CL ��� �cat�clause�process�type�actions�

verb��process�class�actions���

CL�prot ��� �none � �cat�np�animate�yes�	� �
�

CL�goal ��� �none � �cat�np�	�

CL�benef ��� �none � �cat�np�	�

clause�voice�CL	�

transitive�class�CL	�

CL�verb�cat ��� verb�group�

CL�subject�number ��� CL�verb�number� ���

clause�pattern�CL	�

clause�pattern�CL	 ��

CL�pattern ��� �subject�verb�����object������ ���

CL�verb�voice ��� Voice�

clause�pattern�Voice�CL	� ���

clause�pattern�active�CL	 ��

 bitransitive verb without preposition

CL ��� �verb��transitive�class�bitransitive�

dative�prep�none��

pattern������verb�iobject�object������� ���

 preposition given in input

given�CL�verb�dative�prep	�

CL ��� �dative��cat�pp��

pattern������verb�object�dative������� ���

CL�dative�prep�lex ��� CL�verb�dative�prep�

CL�dative�np ��� CL�iobject�

 default case

CL ��� �verb��dative�prep�none���

clause�pattern�passive�CL	 ��

Figure �� PFUF version of the grammar

Alternatives can be named and one can ask the system to index on a given feature �for
e�ciency reasons �cf
 ���
 One usually asks for such an indexation on a feature which is
highly discriminating for the selection of the correct alternative

To unify � features equationnally� one can use the following syntax� �feature� �� feature
�	

�cf
 ���
 This indicates that the features feature� and feature
 of the current structure
must have the same value �or be made to by uni	cation
 By adding an appropriate number
of �� one can specify uni	cation with a feature situated above the current one in the top�
level structure
 For example� �np �� � prot�	 uni	es the current level�s np feature with
the parent level�s prot feature �cf
 ���
 A more rarely�used equational notation without
the � can also be used to specify absolute uni	cations �from the top of the structure instead
of relative ones

A little later in the grammar� we 	nd the constraints on constituent order
 The pattern
meta�feature is used to specify them� with the reserved value dots indicating a variable�sized
sequence of constituents �cf
 ���� ���� ����

��� PFUF

Our system represents a grammar as a set of Prolog rules
 The entry point of the grammar
is the Prolog predicate gram�� whose single parameter is the input functional structure

The syntactic representation we chose for feature�value pairs is a very common one in
the Prolog world� each pair is represented as feature�value and the pairs are combined in a
standard Prolog list to produce a functional structure
 Uni	cations are performed equation�
nally using the ����� operator �cf
 ���

The predicate given is used to test if a feature is de	ned in the input structure �cf
 ���

It replaces FUF�s reserved value of the same name
 It�s implementation is very straightfor�
ward in Prolog and requires no modi	cations of the basic uni	er

Disjunctions are usable at � levels
 At the rule level� the standard Prolog disjunction
operator ��� can be used directly� since rules are Prolog code �cf
 ���
 At the level of the
uni	er� the ����� operator allows the use of ��� to specify a disjunction of possible values
in a more compact way �cf
 �
�
 Note that this second form of disjunction is translated by
our rule pre�processor into the 	rst form

Contrary to FUF �
�� our grammars are very modular because they are separated into
many small Prolog rules that are specialized for a given task �ex� clause�pattern
 This
makes the grammar much easier to read and maintain
 Also� since our rules are represented
directly as Prolog code� it is very easy to call native Prolog procedures from the grammar

No �escape� mechanism is necessary

Indexation of alternatives is provided by the Prolog compiler� and we try to precompile

the grammar into a form that makes it possible for almost any indexing compiler to optimize
it �see the transformation shown in 	gure �

Constituent order speci	cation is done as in FUF with the meta�feature pattern �cf

���� ���� ���
 The atom �

� represents an unspeci	ed number of constituents �cf
 section
�

To make the runtime layer more e�cient� our system preprocesses the input grammar
and transforms it into Prolog code that can run almost directly �CSET calculations are done
by an external inference engine
 Many tranformations are applied� including the following�

� transform feature�level disjunction into rule�level disjunction

�ex� X����A�B	 ���� X���A�X���B	

� transform calls to ��� into direct calls to the feature uni	er unif

� partial evaluation of functional structures to reduce the number of calls to unif

�ex� �X ��� �a���b�
�� X ��� �c���d���	 ���� �X ��� �a���b�
�c���d���		

� generate new disjunctive rules to replace inter�rule disjunction �	gures � and �

� partial evaluation of simple constraints to bind the new rules� parameters� thus allowing
Prolog to index e�ciently �	gure �

� translate calls to given into unif�nonvar pairs �	gure �

Figure � shows a typical input that can be fed to our system
 This input� which describes
the sentence �Mary is thrown a heavy ball by John�� was translated directly from example
ir�� in the FUF �
� distribution
 It is written in structural notation

The 	rst processing step required to generate a sentence is enrichment by uni	cation

This process consists in recursively unifying the input with the grammar as described in
sections � and �
 Figure � shows the result of applying this step to the input from 	gure �

The second step is the linearization process� which extracts the lexemes and their features
from the enriched structure shown in 	gure �
 The patterns from the enriched structure are
processed with a pattern uni	er to obtain a linear order for the lexemes
 The result of this
step is shown in 	gure �
 Afterwards� a simple morphological component is used to decline
the lexemes and produce the 	nal NL sentence

� Comparing the � systems

FUF�s uni	er and inference engine are composed of �� Common Lisp modules� totaling
around ���� lines of code �about ���Kb

gram�CL	 ��

given�CL�verb�lex	�

CL ��� �cat�clause�process�type�actions�verb��process�class�actions���

CL�prot ��� �none � �cat�np�animate�yes�	�

CL�goal ��� �none � �cat�np�	�

CL�benef ��� �none � �cat�np�	�

clause�voice�CL	�

transitive�class�CL	�

CL�verb�cat ��� verb�group�

CL�subject�number ��� CL�verb�number�

clause�pattern�CL	�

becomes�

gram������	 ��

unif��verb��lex����
��������
�����
���������	�

nonvar����
��	�

unif��������cat�clause�process�type�actions�

verb��process�class�actions����������������	�

gram��������	�

gram�
������	�

gram��������	�

clause�voice������	�

transitive�class������	�

unif��������verb��cat�verb�group�number�����
����������

subject��number�����
������
�������
��	�

clause�pattern������	�

gram���������	 ��

unif��prot�none���������������	�

gram��������
	 ��

unif��prot��cat�np�animate�yes�����
����������������
	�

gram�
�������	 ��

unif��goal�none���������������	�

gram�
�������	 ��

unif��goal��cat�np�����������������������	�

gram���������	 ��

unif��benef�none���������������	�

gram���������	 ��

unif��benef��cat�np�����
�����������������	�

Figure �� Precompilation of a top�level rule

transitive�class�CL	 ��

CL�verb�transitive�class ��� Trans�

�Trans � intransitive� CL ��� �object�none�iobject�none��

Trans � transitive� CL ��� �iobject�none��

Trans � neutral� CL ��� �iobject�none��

Trans � bitransitive	�

becomes�

transitive�class�������	 ��

unif��verb��transitive�class������������������������������	�

gram�����������������	�

gram����intransitive�������	 ��

unif���������object�none�iobject�none��������	�

gram����transitive�������	 ��

unif���������iobject�none��������	�

gram����neutral�������	 ��

unif���������iobject�none��������	�

gram����bitransitive�������	�

Figure �� Precompilation with indexation

�cat�clause�

prot��lex�john�np�type�proper��

goal��lex�ball�np�type�common�definite�no�

describer��lex�heavy���

benef��lex�mary�np�type�proper��

subject��lex�mary�np�type�proper��

verb��dative�prep�to�transitive�class�bitransitive�

lex�throw��

Figure �� Example input �structural form

�cat�clause�

prot��lex�john�np�type�proper�cat�np�animate�yes�

head��lex�john�number�singular�cat�noun��������

number�singular�qualifier�none�

pattern���head���������

definite�yes�determiner�none�describer�none��������

goal��lex�ball�np�type�common�definite�no�

describer��lex�heavy�cat�adj���������cat�np�

head��lex�ball�number�singular�cat�noun��������

number�singular�qualifier�none�

pattern���determiner�����head������

�����describer�head��������������

determiner��cat�det�definite�no�number�singular�

lex�a����������������

pattern���subject�verb�����object������

�����verb�object�by�obj�������������

iobject�none�������

Figure �� Enriched structure after uni	cation

��lex�mary�number�singular�cat�noun���������

�cat�verb�lex�be�number�singular���������

�cat�verb�ending�past�participle�lex�throw���������

����

�cat�det�definite�no�number�singular�lex�a���������

����

�lex�heavy�cat�adj���������

�lex�ball�number�singular�cat�noun��������

����

�lex�by�cat�prep����
����

�lex�john�number�singular�cat�noun��������

����

Figure �� Linearized structure for 	nal sentence �Mary is thrown a heavy ball by John�

A good part of this complexity comes from the fact that Lisp is not uni	cation�based and
does not perform automatic backtracking
 The implementation of such a system in Prolog is
much easier and produces a very compact engine� since most of the functionality is already
present in Prolog itself

Our prototype�s inference engine is very small in comparison �about ��� lines of Prolog�
which comes to around �Kb
 Add to that our small grammar pre�processor �less than ���
lines of Prolog and you have most of the basic functionality of FUF in about one tenth of
the code

Using a language that is already rich in the areas of uni	cation and backtracking instead
of building on top of Lisp also gives us a net advantage when it comes to performance
 In�
deed� a good Prolog compiler is much more e�cient at doing things than an implementation
such as FUF

To further improve on performance� we have decided to represent our rules as directly
executable Prolog procedures� which eliminates a level of meta�interpretation that can re�
ally slow things down
 This allows the Prolog compiler to do most of the optimizations for us

Our system uses a pre�processor to translate grammars from the form shown in 	gure �
into a series of direct calls to the feature uni	er described in �Boy���
 Thus� the preproces�
sor eliminates the level of meta�interpretation associated with the expansion of the �����
operator�s �exible syntax
 It also translates the � types of disjunctions and the patterns al�
lowed in our grammars� which �Boy��� doesn�t address because it wasn�t aimed at FUF�type
grammars

A series of performance tests using the FUF �
� examples associated with the grammar
we used �including the input shown in section �
� show that our system is roughly ��� times
faster than FUF at uni	cation
 This factor of improvement can really make the di�erence
between a usable system and one that has too long a response time

� Conclusion

The prototype described in this paper has ful	lled all our expectancies
 Indeed� it imple�
ments most of the important features of FUF while maintaining an astonishing level of
simplicity
 Its implementation remains very close to the Prolog language� which gives it a
distinct advantage performance�wise

Also� we have looked at other special features present in FUF �random alternatives� op�
tional sub�structures� � � � and most of them can be added to the prototype with only a few
lines of Prolog in the pre�processor �without changing the inference engine or the uni	er

For example� random alternatives would be implemented in the preprocessor by generating
calls to the random predicate in the Prolog code
 Nevertheless� some meta�features such as

the keyword any require slight modi	cations in the uni	er and the engine

It would be possible to increase the system�s performance by compromising a little at
the versatility level
 For example� it would be possible to completely eliminate the inference
engine by letting the pre�processor issue all recursive calls directly in its output rules
 These
recursive calls would then be compiled along with the rest of the Prolog code for the rules
and there would be no more need for an inference engine as the rules would do all the work
themselves
 Of course� since all of this would be done in the pre�processor� the grammars
would stay unchanged and the user wouldn�t have to enter the recursive calls by hand
 This
requires that the constituent set for all rules be known at compile time� and thus it probably
requires that all possible inputs to the grammar be known in advance
 It also forces a
recompilation of the whole grammar to change the search algorithm

Also� �ED��� shows how feature�list uni	cation can be compiled into term uni	cation

This transformation might also increase performance in many cases� but has not been tested
in our framework
 It is only feasible if all possible features in each rule are known in advance
�at compile time and do not depend on the input

The PFUF system will be used in the framework of the SCRIPTUM project at the Univer�
sity of Montr�eal
 This project unites a group of professors and graduate students interested
in text generation
 The language of choice in the group is Prolog and this was one of the
motivations for the implementation of PFUF
 Through its use by the various members of the
project� this prototype implementation will evolve into a more complete system� gradually
acquiring the more advanced features of FUF
 Nevertheless� we will try to keep the system
as small as possible� allowing anybody to modify it and integrate it into their research

Acknowledgements

We wish to thank the Canadian Natural Sciences and Engineering Research Council for
making this research possible through a scholarship
 Michael Elhadad for his work on FUF
and for making it publicly available
 Leila Kosseim for helping with the translation of our
example grammar from FUF to PFUF
 Other members of the SCRIPTUM research group
for their technical and moral support

References

�Boy��� Michel Boyer
 Towards Functional Logic Grammars
 In P
 St�Dizier� editor�
Proceedings of the Second International Workshop on Natural Language Under�
standing and Logic programming� pages ������ Vancouver� ����

�DHRS��� R
 Dale� E
 Hovy� D
 R�osner� and O
 Stock� editors
 Aspects of Automated Natural
Language Generation
 Springer�Verlag� ����

�ED��� Andreas Eisele and Jochen D�orre
 A lexical functional grammar system in PRO�
LOG
 In COLING���� ����

�Elh��� Michael Elhadad
 FUF� the Universal Uni	er
 User Manual Version �
�
 Technical
report� Columbia University� ����

�ER��� Michael Elhadad and Jacques Robin
 Controlling content realization with func�
tional uni	cation grammars
 In Dale et al
 �DHRS���

�GM��� Gerald Gazdar and Chris Mellish
 Natural Language Processing in PROLOG �
An introduction to computational linguistics
 Addison�Wesley� ����

�Kay��� Martin Kay
 Functional Grammar
 In Christina Chiarello et al
� editors� Pro�
ceedings of the Fifth Annual Meeting of the Berkeley Linguistics Society� pages
�������� ����

�Kay��� Martin Kay
 Uni	cation in grammar
 In Veronica Dahl and Patrick Saint�Dizier�
editors� Natural Language Understanding� pages �������� Amsterdam� ����

�M���� Kathleen R
 McKeown et al
 Language generation in COMET
 In Mellish et al

�MDZ���

�MDZ��� Chris Mellish� Robert Dale� and Michael Zock� editors
 Current Research in
Language Generation
 Academic Press� ����

�MT��� Philip Miller and Th�er�ese Torris� editors
 Formalismes syntaxiques pour le traite�
ment automatique du langage naturel
 Hermes� ����

