
Supervised Search Result Diversification
via Subtopic Attention

Zhengbao Jiang , Zhicheng Dou,Member, IEEE, Wayne Xin Zhao ,Member, IEEE,

Jian-Yun Nie,Member, IEEE, Ming Yue, and Ji-Rong Wen, Senior Member, IEEE

Abstract—Search result diversification aims to retrieve diverse results to satisfy as many different information needs as possible.

Supervised methods have been proposed recently to learn ranking functions and they have been shown to produce superior results

to unsupervised methods. However, these methods use implicit approaches based on the principle of Maximal Marginal Relevance

(MMR). In this paper, we propose a learning framework for explicit result diversification where subtopics are explicitly modeled. Based

on the information contained in the sequence of selected documents, we use the attention mechanism to capture the subtopics to be

focused on while selecting the next document, which naturally fits our task of document selection for diversification. As a preliminary

attempt, we employ recurrent neural networks and max pooling to instantiate the framework. We use both distributed representations

and traditional relevance features to model documents in the implementation. The framework is flexible to model query intent in either

a flat list or a hierarchy. Experimental results show that the proposed method significantly outperforms all the existing search result

diversification approaches.

Index Terms—Search result diversification, subtopics, attention

Ç

1 INTRODUCTION

IN real search scenario, queries issued by users are usually
ambiguous or multi-faceted. In addition to being relevant

to the query, the retrieved documents are expected to be as
diverse as possible in order to cover different information
needs. For example, when users issue “apple”, the underly-
ing intents could be the IT company or the fruit. The
retrieved documents should cover both topics to increase
the chance to satisfy users with different information needs.

Traditional approaches to search result diversification are
usually unsupervised and adopt manually defined functions
with empirically tuned parameters. Depending on whether
the underlying intents (or subtopics) are explicitly modeled,
they can be categorized into implicit and explicit approaches
[1], [2]. Implicit approaches [3] do notmodel intents explicitly.
They emphasize novelty, i.e., the following document should
be “different” from the former ones based on some similarity
measures. Instead, explicit approaches [4], [5], [6], [7], [8], [9]
model intents (or subtopics) explicitly. They aim to improve
intent coverage, i.e., the following document should cover the
intents not satisfied by previous ones. Intents or subtopics can

be determined by techniques such as query reformulation
[10], [11], [12], [13] and query clustering based on query logs
and other types of information. Existing studies showed that
explicit approaches have better performance [5], [6], [7], [8],
[9] than implicit approaches due to several reasons: on the
one hand, they provide a more natural way to handle sub-
topics than implicit approaches; on the other hand, their rank-
ing functions are closer to the diversity evaluation metrics
which are mostly based on explicit subtopics. Furthermore,
most similarity measures used in the implicit approaches,
e.g., those based on language model or vector space model,
are determined globally on the whole documents, regardless
of possible search intents. This might be problematic for
search result diversification: two documents could contain
similar words and considered globally similar, but this simi-
lar partmay be unrelated to underlying search intents.

To avoid heuristic and handcrafted functions and parame-
ters, a new family of research work using supervised learning
is proposed. They try to learn a ranking function automati-
cally. Their major focus lies in the modeling of diversity,
including structural prediction [14], rewarding functions for
novel contents [15], measure-based direct optimization [16],
and neural network based method [17]. Regardless of diver-
sity modeling and optimization methods, all these solutions
inherit the spirit of MMR which is an implicit approach and
do not take intents into consideration. Although the learning
methods may result in a better similarity measure, they are
hindered by the gapbetween reducing document redundancy
and improving intent coverage. They suffer from similar
problems with implicit unsupervised approaches. Without
modeling subtopics explicitly, they cannot directly improve
intent coverage. Hence, there is a need to incorporate explicit
subtopicmodeling into supervised diversificationmethods.
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To address the above issue, we propose to model
subtopics in a general supervised learning framework. Our
framework combines the strengths of both explicit unsuper-
vised approaches and (implicit) supervised approaches.
First, subtopics are explicitly modeled, allowing us to im-
prove intent coverage in a proactive way. Second, it auto-
matically learns the diversification ranking function, and is
able to capture complex interaction among documents and
subtopics. We call this framework Document Sequence with
Subtopic Attention (DSSA). More specifically, to select the
next document, we first model the sequence of selected
documents in order to capture their contents as well as their
relationship with the subtopics. Then based on the informa-
tion contained by previous documents, attention mecha-
nism is used to determine the under-covered subtopics to
which we have to pay attention in selecting the next docu-
ment. Attention mechanism has been successfully used to
deal with various problems in image understanding [18]
and NLP [19], [20]. This mechanism corresponds well to the
document selection problem in search result diversification:
attention on subtopics changes along with the addition of a
document in the result list. For example. Assume that we
have 3 subtopics and 4 documents whose relevance judg-
ments are shown in Table 1. Given that we have selected d1
and d2, which cover subtopics i1 and i2, the attention for
next choice should incline to i3 which is not covered, thus d3
is a better choice than d4 at this position. We will show that
the DSSA framework is general enough to cover the ideas of
previous unsupervised explicit methods.

We propose a specific implementation of DSSA using
recurrent neural networks (RNN) and max-pooling to
leverage both distributed representations and relevance
features, which we call DSSA-RNNMP. We further extend
this model to introduce hierarchical subtopics. The basic
idea is that subtopics inherently exist as a hierarchical
structure, where subtopics on high levels represents gen-
eral user intents while subtopics on low levels are more
specific [8], [21]. Only considering coarse or fine-grained
subtopics may result in suboptimal intent coverage. In par-
ticular, attention is calculated for subtopics on different
levels. A document’s matching scores to subtopics on the
same level are combined by attention to obtain the score of
this level. The final score is the weighted sum of the scores
of different levels. We call this hierarchical model HDSSA-
RNNMP. Experimental results on TREC Web Track data
show that DSSA-RNNMP outperforms the existing meth-
ods significantly and HDSSA-RNNMP further improves
the performance. To our knowledge, this is the first time
that a supervised learning framework with attention
mechanism is used to model subtopics explicitly for search
result diversification.

2 RELATED WORK

2.1 Implicit Diversification Approaches

The basic assumption of implicit diversification approaches
is that dissimilar documents are more likely to satisfy differ-
ent information needs. The most representative approach is
MMR [3]:

SMMRðq; d; CÞ ¼ ð1� �ÞSrelðd; qÞ � � max
dj2C

Sdivðd; djÞ; (1)

where Srel and Sdiv model document d’s relevance to the
query q and its similarity to a selected documents dj respec-
tively. To gain high ranking score, a document should not
only be relevant, but also be dissimilar from the selected
documents. The definition ofmeasures for relevance and doc-
ument similarity is crucial, which is done manually in this
approach. Based on desirable facility placement principle
[22], [23] proposes first clustering the candidate documents
then composing the diverse result set, which achieves a good
balance between effectiveness and efficiency.

Recently, machine learning methods have been leveraged
to learn score functions. Yue and Joachims [14] proposed
SVM-DIV which uses structural SVM to learn to identify a
document subset with maximum word coverage. However,
word coverage may be different from intent coverage. Opti-
mizing the former may not necessarily lead to optimizing the
latter. Similar to MMR, Zhu et al. [15] proposed relational
learning-to-rank model (R-LTR) which learns to score a docu-
ment based on both relevance and novelty automatically, in
order to maximize the probability of optimal rankings. Based
on R-LTR score function, Xia et al. [16] proposed a perceptron
algorithm using measures as margins (PAMM) to directly
optimize evaluation metrics by enlarging the score margin of
positive and negative rankings. They further proposed to use
a neural tensor network (NTN) [17] tomeasure document sim-
ilarity automatically from document representations, which
avoids the burden to define handcrafted diversity features.

The above supervised approaches are shown to outper-
form the unsupervised counterparts. However, they are all
implicit approaches without using subtopics. In this paper,
we propose a learning-based explicit approach which mod-
els subtopics explicitly.

2.2 Explicit Diversification Approaches

Explicit approaches model subtopics underlying a query,
aiming at returning documents covering as many subtopics
as possible. These approaches leverage external resources to
explicitly represent information needs in subtopics. IA-Select
[4] uses classified topical categories based on ODP taxon-
omy. xQuAD [5] is a probabilistic framework that uses query
reformulations as intent representations. PM2 [6] tackles
search result diversification problem from the perspective of
proportionality. TxQuAD and TPM2 [7] represent intents by
terms and transform intent coverage to term coverage.
Hu et al. [8] proposed to use a hierarchical structure for sub-
topics instead of a flat list, which copes with the inherent
interaction among subtopics. The benefit of hierarchical
subtopics lies in that user intents of different granularities
are modeled simultaneously. Two specific models, namely
HxQuAD and HPM2, were proposed using hierarchical
structure. Yu et al. [9] formulated diversification task as a 0-1

TABLE 1
Subtopic Relevance Example

docnsubtopic i1 i2 i3

d1
p p �

d2
p p �

d3 � � p
d4 � p �
d5 � � p
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multiple subtopic knapsacks (0-1 MSKP) problem where
documents are chosen like filling upmultiple subtopic knap-
sacks. To tackle this NP-hard problem, max-sum belief prop-
agation is used.

As summarized in Table 2, all existing explicit app-
roaches are unsupervised and the functions and parameters
are defined heuristically. In this paper, we use supervised
learning to model the interaction among documents and
subtopics simultaneously.

2.3 RNN with Attention Mechanism

RNN can capture the interdependency between elements in a
sequence. Attention mechanism, which is usually built on
RNN,mimics human attention behavior focusing on different
local region of the object (an image, a sentence, etc.) at differ-
ent times. In computer vision, [18] used RNN with attention
to extract information from an image by adaptively selecting
a sequence of the most informative regions instead of the
whole image. In NLP, attention mechanism is typically used
in neural machine translation (NMT). Traditional encoder-
decoder models encode the source sentence into a fixed-
length vector fromwhich the target sentence is decoded. Such
fixed-length vector may not be powerful enough to reflect all
the information of the source sentence. An attention-based
model [19] was proposed to automatically pay unequal and
varied attention to source words during decoding process. In
particular, to decide the next target word, not only the fixed-
length vector, but also the hidden states corresponding to
source words relevant to the target word are used. Luong
et al. [20] generalized the idea and proposed two classes of
attention mechanism, namely global and local approaches. In
this paper, attention mechanism is used on subtopics, which
guides the model to emphasize different intents at different
positions.

In the following section, we will first propose a general
framework, then instantiate it with a specific implementation.

3 DOCUMENT SEQUENCE WITH SUBTOPIC

ATTENTION FRAMEWORK

Given a query set Q, a document set Dq and a subtopic set
I q for each query q 2 Q, the goal of explicit methods is to
learn a ranking function fðq;Dq; I qÞ which is expected to
output a ranking of documents in Dq that is both relevant
and diverse. The loss function could be written in the follow-
ing general form: X

q2Q
Lðfðq;Dq; I qÞ;YqÞ; (2)

where L measures the quality gap between the ranking out-
putted by f and the best ranking Yq. Different from

traditional retrieval tasks, diversity has to be considered in
the ranking and evaluation process. Theoretically, diversity
ranking is NP-hard [4], [24]. Hence, a common strategy is to
make greedy selections [3], [5]: at the tth position, we
assume that t� 1 documents have been selected and formed
a document sequence Ct�1. The task is to select a locally opti-
mal document dt from the remaining candidate documents
based on a score function Sðq; dt; Ct�1; I qÞ. Note that implicit
supervised methods correspond to the case where I q is an
empty set. Ct�1 should be modeled as a sequence instead of
a set, which means that the order of documents matters.
The reason is that users scan documents sequentially and
better utility could be achieved by making adjacent docu-
ments diverse. For example, given C2 ¼ ½d1; d3� as showed in
Table 1, it is better to rank d2 at the third position than d5.

To motivate our approach, we start with the ideas of the
unsupervised explicit approaches, which can be formulated
as the following general form:

Sunsupervisedðq; dt; Ct�1; I qÞ
¼ ð1� �ÞSrelðdt; qÞ þ ) relevance

�
X
ik2Iq

Sdivðdt; ikÞAðCt�1; I qÞk|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
subtopic weights

; ) diversity;
(3)

where ik 2 I q is the kth subtopic of q and Srel and Sdiv calcu-
late document dt’s relevance to a query and to a subtopic
respectively. The essence of diversity lies in the function A
which calculates the weights for subtopics I q based on pre-
vious document sequence Ct�1. For xQuAD, AðCt�1; I qÞk ¼
P ðikjqÞ

Q
dj2Ct�1 ð1� P ðdjjikÞÞ where P ðikjqÞ is the initial

importance of subtopic ik, P ðdjjikÞ is the probability that dj
is relevant to ik. The weight of a subtopic is determined by
the likelihood that previous documents are not relevant to
this subtopic. PM2 mimics seats allocation of competing
political parties to adjust subtopic weights after each selec-
tion, i.e., AðCt�1; I qÞ is estimated according to the difference
between the subtopic’s distributions in Ct�1 and in I q. All
these methods don’t model the selected documents as a
sequence. In addition, the functions and parameters are
heuristically defined, which may not best fit the final goal.

To tackle the above problems, we extend Equation (3) to
the following general learning framework:

SDSSAðq; dt; Ct�1; I qÞ ¼ sdt

¼ ð1� �ÞSrelðvvdt ; vvqÞ þ ) relevance

�Sdiv
�
vvdt ; vvið�Þ ;A

�
Hð½vvd1 ; . . . ; vvdt�1 �Þ; vvið�Þ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

subtopic attention

�
; ) diversity;

(4)

where documents, queries, and subtopics are denoted by
their representations, as explained in Table 3. In this paper,
we focus on learning a ranking function only and assume
that these representations are given and will not be modi-
fied. There are three main components, namely (1) document
sequence representation component H, (2) subtopic attention
component A, and (3) scoring component Srel and Sdiv,
which are also illustrated in Fig. 1. This framework is
inspired from the attention models used in image

TABLE 2
Categorization of Diversification Approaches

unsupervised supervised

implicit MMR SVM-DIV, R-LTR,
PAMM, NTN

explicit IA-Select, xQuAD, PM2,
TxQuAD, TPM2, HxQuAD,

HPM2, 0-1 MSKP

DSSA
(our approach)
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understanding [18] and neural machine translation [19],
[20], however adapted to our diversification task.

Next, we briefly describe the three components. The doc-
ument sequence representation component H encodes the
information contained in document sequence Ct�1 into a
fixed-length hidden state hht�1, which could consider the
interaction and dependency among these documents. hht�1
could be viewed as a comprehensive and high-level repre-
sentation of Ct�1. The subtopic attention aat;ð�Þ is calculated
by the subtopic attention component A using hht�1 and sub-
topic representations vvið�Þ . The attention evolves from the
first to the last ranking position, driving the model to
emphasize different subtopics based on previous document
sequence. Finally, the scoring components Srel and Sdiv cal-
culate relevance and diversity scores respectively. Notice
that Sdiv is not limited to be a weighted sum over all sub-
topics as Equation (3). It can incorporate more complex
interaction among subtopics.

The essence of this framework can be summarized as fol-
lows. Alongwith the selection ofmore documents, we encode
the information of previous document sequence, and the
attention mechanism will monitor the degree of satisfaction
for each subtopic. High scores are assigned to the documents
relevant to less covered subtopics. Finally, multiple subtopics
would be well covered by adaptively learning the attention.
In this way, our framework builds an intuitive approach
to explicitly model subtopics. We name the framework

Document Sequence with Subtopic Attention (DSSA). DSSA is a
unified architecture that takes both relevance and diversity
into consideration, and diversity is achieved by modeling the
interaction among documents and subtopics.

4 RESULT DIVERSIFICATION USING DSSA

In this section, we instantiate DSSA to a concrete form and
articulate the training and prediction algorithms. The main
idea of DSSA is to dynamically capture accumulative rele-
vance information of previous document sequence, so as to
calculate subtopic attention. Inspired by the recent progress
on sequence data modeling, we adapt RNN to capture the
information of previous document sequence based on dis-
tributed representations of documents. However, the effec-
tiveness of distributed representation heavily depends on a
large amount of training data. Typically, the representation
is built automatically using the data to optimize an objective
function [25]. We do not have such large data and we can
only use unsupervised methods (e.g., doc2vec) to create
representation, of which the effectiveness could be subopti-
mal. Indeed, our preliminary experiments using only the
distributed representation created by unsupervised meth-
ods yield low effectiveness. To compensate this weakness,
we also use traditional relevance features such as BM25
score, which are proven useful, to calculate subtopic atten-
tion and final score. Such a combination of distributed rep-
resentations and features has been used in several previous
works [17], [26]. In addition to RNN, we also adopt the way
using max-pooling [17], which has been shown effective, to
implement subtopic attention mechanism. We call this
model DSSA-RNNMP (DSSA model using RNN and Max-
Pooling), as illustrated in Fig. 2. Based on this implementa-
tion, we further incorporate hierarchical subtopics to con-
sider user intents on different granularities. In addition, we
also propose a list-pairwise approach for optimization,
which is different from the existing studies.

TABLE 3
Notations in DSSA

Notation Definition

r, dt a ranking, the tth document.

q, ik the query, the kth subtopic.

vvdt representation of the document at the tth position.

vvq representation of the query.

vvik representation of the kth subtopic.

hht hidden state of previous t documents.

at;k attention on the kth subtopic at the tth position.PK
k¼1 at;k ¼ 1; at;k 2 ½0; 1�whereK is the number of

subtopics. A large value means that this subtopic is less
satisfied by previous t� 1 documents and thus needs
more attention at the tth position.

sdt the final score of the document at the tth position.

Fig. 1. Illustration of DSSA framework.

Fig. 2. Architecture of DSSA-RNNMP. Previous t� 1 documents are
encoded into hht�1 from distributed representations eed1 ; . . . ; eedt�1 . Atten-
tion on the kth subtopic at;k is then calculated based on (1) hidden state
hht�1 and subtopic representation eeik and (2) max-pooling on relevance
features xxd1 ;ik ; . . . ; xxdt�1 ;ik .
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4.1 A Neural Network Implementation

We first describe the constitution of representations, namely
vvdt , vvq, and vvik , then elaborate how we implement document
sequence representation, subtopic attention, and scoring compo-
nents. The parameters are listed in Table 4.

vvdt : the representation of a document is composed of two
parts: distributed representations and relevance features.
Distributed representation can be constructed in different
ways. In this paper, we consider three methods: SVD, LDA
[27], and doc2vec [28]. Relevance features are those used in
traditional IR, such as BM25 score etc. Suppose that we
have a distributed representation of size Ed, K subtopics,
and R relevance features, the total size of vvdt would be
Ed þRþKR. We use eedt 2 REd , xxdt;q and xxdt;ik 2 RR to
denote distributed representation, relevance features for a
query and a subtopic respectively.

vvq, vvik : we first retrieve top Z documents using some basic
retrieval model (such as BM25). These documents are
concatenated as a pseudo document, then similar to eedt , a dis-
tributed representation of sizeEq is generated. For consistency,
we also use eeq and eeik 2 REq to represent these representations.

4.1.1 Document Sequence Representation

H is instantiated using RNN to encode the information of
previous document sequence. Several types of RNN cell can
be used, ranging from the simple vanilla cell, GRU cell [29],
to LSTM cell [30]. For simplicity, we only show the vanilla
cell here. At the tth position, we derive the (accumulative)
document sequence representation as follows:

hht ¼ tanhðWWn½hht�1; eedt � þ bbnÞ; (5)

where WWn 2 RU�ðUþEdÞ (U is the size of the hidden state),
bbn 2 RU and ½; � is a concatenation. The cell transforms previ-
ous hidden layer hht�1 and current document distributed
representation eedt to another space, where a bias bbn is added
and a non-linear activation (i.e., tanh) then happens, pro-
ducing the next hidden layer hht. hh0 is initialized as a vector
of zeros. The vanilla cell can be easily replaced by GRU and
LSTM cells, whose results will be report in Section 6.2.

4.1.2 Subtopic Attention

By looking at hht�1 which stores the information of previous
t� 1 documents and eeið�Þ which represents the meaning of
each subtopic, we are capable of discovering which intents
are not satisfied and thus need to be emphasized at the tth
position. To capture this idea, we use A0ðhht�1; eeikÞ to mea-
sure the (unnormalized) importance of the kth subtopic at
the tth position, which could be implemented in many
ways. We consider the following two ways similar to [20]:

A0ðhht�1; eeikÞ ¼
hh>t�1WW

aeeik ; ðgeneralÞ
�hh>t�1 � eeik ; ðdotÞ

(
(6)

where WWa 2 RU�Eq . The “general” operation uses bilinear
tensor product to relate two vectors multiplicatively
through its nonlinearity [31]. The “dot” product requires
both vectors to be in the same space. Similar hht�1 and eeik
mean that previous documents are likely to satisfy this sub-
topic, and thus a lower attention score will be attributed to

it. The above way mainly relies on distributed representa-
tions, which may not always be effective, especially under
limited data.

Hence, we further leverage relevance features to enhance
the subtopic attention. xxdt;ik directly reflects the degree of
satisfaction for a subtopic-document pair and is combined
linearly using wwp to form an explicit signal. To derive the
accumulative information of the document sequence, we
adopt commonly used max-pooling to select the most sig-
nificant signal from previous documents, which is similar to
the max operation used in MMR. Max-pooling could also be
interpreted as a regularizer, which reduces the number of
parameters and thus avoids overfitting:

A00 ðxxd1;ik ; . . . ; xxdt�1;ikÞ ¼ maxð½xx>d1;ik � wwp; . . . ; xx>dt�1;ik � wwp�Þ; (7)

where A00 ðxxd1;ik ; . . . ; xxdt�1;ikÞ measures the degree of satisfac-
tion of the kth subtopic based on relevance features through
max-pooling. Lower value indicates that the previous docu-
ments are more likely to be relevant to this subtopic. Note
that if we view the signals produced by max-pooling (i.e.,
the vectors in “max-pooling” section of Fig. 2) as a part of
the general hidden states, our concrete implementation fit
in DSSA framework.

We adopt an addictive way to integrate both parts and
then use softmax to produce (normalized) attention distri-
bution:

a
0
t;k ¼ A

0ðhht�1; eeikÞ þ A
00ðxxd1;ik ; . . . ; xxdt�1;ikÞ;

at;k ¼
wik expða

0
t;kÞPK

j¼1 wij expða0t;jÞ
ðwij � 0; 8jÞ:

(8)

softmax is modified to include the initial subtopic impor-
tance wik , which encodes our intuition that important sub-
topics are more likely to gain attention.

4.1.3 Scoring

The final score consists of relevance score sreldt
and diversity

score sdivdt
, which are combined by a coefficient �:

sdt ¼ ð1� �Þsreldt
þ �sdivdt

ð0 � � � 1Þ: (9)

The relevance and diversity score are calculated as follows:

sreldt
¼ S0ðeedt ; eeqÞ þ xx>dt;q � wwr;

sdivdt
¼ aa>t;ð�Þ �

S0 ðeedt ; eei1Þ þ xx>dt;i1 � wwr

..

.

S0ðeedt ; eeiK Þ þ xx>dt;iK � wwr

2
6664

3
7775;

(10)

where wwr 2 RR and aat;ð�Þ is the attention derived from sub-
topic attention component. The diversity score is calculated

TABLE 4
Parameters in DSSA-RNNMP

Notation Definition

WWn, bbn parameters of RNN with vanilla cell.
WWa, wwp parameters used in subtopic attention.
WWs, wwr parameters used in scoring.
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as a weighted combination of the document’s relevance to
each subtopic by attention distribution. We use the same
way to calculate document’s relevance to a query and to its
subtopics using both distributional representations and rel-
evance features, although different ways can be used. Spe-
cifically, dt’s relevance to a query q (or a subtopic ik) is
calculated based on both the similarity between two distrib-
uted representations S0ðeedt ; eeqÞ (or S

0ðeedt ; eeikÞ) and relevance
features xxdt;q (or xxdt;ik ). S

0
intends to produce a matching

score between two representations and wwr linearly combines

features. Similar to A0 , S0 could also be implemented as:

S0ðeedt ; eeikÞ ¼
ee>dtWW

seeik ; ðgeneralÞ
ee>dt � eeik ; ðdotÞ

(
(11)

where WWs 2 REd�Eq . Then the score of a ranking r is calcu-

lated by summing up all the jrj documents’ scores:

sr ¼
Xjrj
t¼1

sdt : (12)

Vector interaction operations A0 and S0 could be imple-
mented using more complex models, such as multilayer
perceptron (MLP), to model the interaction between two
vectors more accurately. We could also use convolutional
neural network (CNN) instead of RNN to model the interac-
tion among a sequence of documents and encode their
information. We deliberately choose to use simple mecha-
nisms in this implementation in order to show that the gen-
eral framework is capable of capturing the essence of
diversification even without complex operations. More
complex implementations will be examined in future work.

4.2 Hierarchical Diversification

Inspired by the idea of organizing subtopics in a hierarchical
structure proposed byHu et al. [8], we introduce hierarchical
subtopics into DSSA. The intuition behind hierarchical sub-
topics is that user intents have different granularities. It
would be biased if we consider only coarse or fine-grained
subtopics. To better understand the deficiency of using sub-
topics without considering different granularities, we use
the query “defender” (query #20) as example, of which the
hierarchical subtopics mined from search engine’s query
suggestions are shown in Fig. 3. If we only use first-level sub-
topics which are crude, we cannot identify the difference

between the document relevant to i1;1;1 and the document
relevant to i1;1;3, as they are relevant to the same first-level
subtopic i1;1. In other words, diversification algorithms have
risks to select multiple documents covering i1;1;1 while ignor-
ing documents corresponding to i1;1;3 because they cannot
perceive the subtle difference between these two subtopics.
In contrast, if we only consider second-level subtopics which
are fine-grained, the algorithms may select three documents
covering i1;1;1, i1;1;2, and i1;1;3 respectively without realizing
that these subtopics are generally similar. Comparing to
choosing documents with subtle difference, it is more rea-
sonable to select documents satisfying i1;1, i1;2, and i1;3
respectively to cover awider range of intents.

Themodel incorporating hierarchical subtopics is denoted
as HDSSA-RNNMP. Assume that we have already obtained
hierarchical subtopics using query suggestions provided by
search engines (like Fig. 3), we need to decide how to derive
the attention paid on all subtopics of different levels and how
to calculate the final score. Inspired by [8], we also calculate
the attention and the score in a layer-wise approach. The hier-
archical subtopic tree, with the query as the root, is split into
several layers according to the depth of the nodes. All the
subtopics of different layers are organized as a flat list, then
attention of each subtopic is calculated just like Section 4.1.2.
A document’s matching scores to the subtopics on the same
layer are combined by attention to get the score of this layer.
Final score is the weighted sum of the score of each layer. In
particular, the first layer only consists of the query; all the sug-
gestions of the query constitute the second layer; the third
layer is the suggestions of the subtopics of the second layer.
Because the query acts as the “root subtopic” (i1 in Fig. 3), we
can treat the query in the same way as other subtopics, which
means that the attention is also calculated for the query. In
consequence, parameter � in Equation (9) is no longer neces-
sary. In other words, the attention on the query serves as
“query-wise �”, which controls the trade-off between rele-
vance and diversity in a query-aware approach.

Formally, we use ik1;:;kl to represent the klth child sub-
topic of parent subtopic ik1;:;kl�1 . Query is denoted as i1. Its
child subtopics are denoted as i1;1, i1;2, and etc. The sub-
script of a subtopic completely conveys its path to the root.
The attention for each subtopic is calculated as follow:

a
0
t;ðk1;:;klÞ ¼ A

0ðhht�1; eeik1 ;:;kl Þ þ A
00 ðxxd1;ik1 ;:;kl ; . . . ; xxdt�1;ik1 ;:;kl Þ;

at;ðk1;:;klÞ ¼
wik1 ;:;kl

expða0t;ðk1;:;klÞÞPL
m¼1

P
k1;:;km

wik1 ;:;km
expða0t;ðk1;:;kmÞÞ

;
(13)

where the attention score for subtopic ik1;:;kl is also calculate
using both distributed representation and relevance features.
The denominator of the softmax sums over all the subtopics
of different layers. Consistent with [8], the initial weight of
ik1;:;kl�1 is the sum of theweights of its child subtopics:

wik1 ;:;kl�1
¼

X
kl

wik1 ;:;kl
: (14)

To guarantee that each layer has the same initial weight, all
the leaf nodes must appear on the deepest layer. If a sub-
topic without a child is not on the deepest layer, we treat
itself as the only descendant. The final score of a document
is calculated as follow:

Fig. 3. Two-level hierarchical subtopics of query “defender”.
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sdt ¼
XL
l¼1

bl

X
k1;:;kl

at;ðk1;:;klÞ
�
S0ðeedt ; eeik1 ;:;kl Þ

þ xx>dt;ik1 ;:;kl � ww
r
�
;

(15)

where the outer sum is over all L layers (in this paper L ¼ 3)
and the inner sum is over all subtopics of the lth layer. In
order to control the importance of the subtopics of different
granularities, we use another layer-wise parameter b. We
investigate two ways of defining b: balanced and unbal-
anced. In balanced setting, all the layers have the same
weights, while in the unbalanced setting, we learn the
weights of each layer simultaneously with other parame-
ters. Both results are reported in Section 6. Fig. 4 depicts the
difference between HDSSA and DSSA. In DSSA, the impor-
tance of each subtopic is affected by its attention and �,
while the importance of the query is only affected by �.
However, in HDSSA, the importance of both query and sub-
topics is controlled by attention and layer-wise weight b,
which is more flexible. DSSA based on a flat list of subtopics
is a special case of HDSSA.

4.3 A List-Pairwise Approach for Optimization

Liu [32] classifies LTR approaches into three categories:
pointwise, pairwise, and listwise. Search result diversifica-
tion is naturally a listwise problem because the score of a
document depends on the previous documents. Take Table 1
as an example, under no previous documents, d2 is better
than d3 because d2 covers one more subtopic (subtopics are
of equal weight). However, given that we have selected d1,
which is similar to d2 while dissimilar to d3, d3 becomes
superior because it provides additional information.

4.3.1 List-Pairwise Training

We propose a list-pairwise training approach. We call it list-
pairwise because a sample in our algorithm consists of a
pair of rankings ðr1; r2Þ: r1 and r2 are totally identical except
the last document. The sample can be written as ðC; d1; d2Þ,
where C is the shared previous document sequence. The
pairwise preference ground-truth is generated based on an
evaluation metric M, such as a-nDCG. If Mðr1Þ > Mðr2Þ, it
is positive, otherwise it is negative. Our approach is similar
to pairwise approaches because it aims to compare a pair of

documents, but this is done within some context. Similarly
to pairwise, the loss function can be defined as binary classi-
fication logarithmic loss:

Llist�pairwise ¼
X
q2Q

X
o2Oq

wðoÞ
�
yðoÞlog

�
P ðrðoÞ1 ; r

ðoÞ
2 Þ

�

þ ð1� yðoÞÞlog
�
1� P ðrðoÞ1 ; r

ðoÞ
2 Þ

��
;

(16)

where Oq is all the pair samples of query q, yðoÞ ¼ 1 indicates

positive and 0 for negative, and P ðrðoÞ1 ; r
ðoÞ
2 Þ is the probability

of being positive calculated by 1
1þexpðs

r
ðoÞ
2

�s
r
ðoÞ
1

Þ. To enhance

effectiveness, we weight pairs with wðoÞ ¼ jMðrðoÞ1 Þ �
MðrðoÞ2 Þj, which means that the bigger the metric score gap,

the more important the pair.
Because DSSA calculates document d’s score sCd based on

previous document C, we could also use Maximum Likeli-
hood Estimation (MLE) or PAMM to optimize our model.
We use Plackett-Luce model [33] to estimate the probability
of a ranking r:

P ðrÞ ¼
Yjrj
i¼1

expðsr½:i�1�di
ÞPjrj

j¼i expðsr½:i�1�dj
Þ
; (17)

where r½: i� 1� means the top i� 1 documents of ranking r.
Then the loss functions could be written as:

LMLE ¼
X
q2Q
�log ðP ðrþq ÞÞ; (18)

LPAMM ¼
X
q2Q

X
rþq ;r�q

½½P ðrþq Þ � P ðr�q Þ �Mðrþq Þ �Mðr�q Þ��; (19)

where ½½condition�� is 1 if the condition is satisfied, 0 other-
wise, MLE maximizes the probability of positive rankings,
and PAMM enlarges the probability margin between posi-
tive and negative rankings according to an evaluation met-
ric. For MLE, the number of best rankings is usually small if
we only have hundreds of queries, which may not be
enough to train adequately the parameters. PAMM uses
preferences between very different rankings that are not
comparable (see Fig. 5b). In contrast, list-pairwise method
only allows the last document to be different (Fig. 5a). This
corresponds better to the decision-making situation in
which we have to choose a document under a given context.
It is expected that such a pair sample allows us to better
train the ranking function. Experiments will show that our
approach works better.

Fig. 4. Difference between HDSSA and DSSA. The initial weight of each
subtopic is shown in parentheses and visualized via color scale. The col-
ored subtopics are the ones to pay attention to.

Fig. 5. Pair sample examples of (a) list-pairwise and (b) PAMM. Both
samples are positive.
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As shown in Fig. 2, our architecture is a unified neural
network and the attention function is continuous, so the gra-
dient of the loss function can be backpropagated directly to
train the model. We use mini-batch gradient descent to facil-
itate training process.

Unfortunately, it is impossible to acquire all the list-pair-
wise samples, which has in total jDqj! (jDqj is the number of
candidate documents) different permutations. So we
develop a sampling strategy similar to negative sampling
[34] as described in Algorithm 1: for each query q, we sample
a large number of pairs of rankings, whose length ranges
from 1 to jDqj. We first obtain some contexts C from both best
rankings and randomly sampled negative rankings (rank-
ings that are not optimal). Then under each C, a pair of docu-
ments ðd1; d2Þ are sampled from the remaining documents
Dq n C if and only if they lead to different metric scores.

Algorithm 1. A List-pairwise Approach For
Optimization

1: procedure: LIST-PAIRWISE TRAINING

input: loss function L, learning rate r, epochs V , query set
Q, document set D, evaluation metricM , random
permutation count N
output: DSSA with trained parameters u

2: initialize u
3: for i from 1 to V do
4: for batch b 2 GetSamplesðQ;D;M;NÞ do
5: g GetGradientðLðb; uÞÞ
6: u u � rg

return DSSAu

7: procedure: GETSAMPLES

input: query setQ, document set Dq for each query q,
evaluation metricM , random permutation count N
output: a set of ranking pairs with weight and preference
fðq1; C1; d11; d12; w1; y1Þ; ðq2; C2; d21; d22; w2; y2Þ; . . .g
include: GetPermsðDq; l; N;MÞ return a best ranking
(under metricM) andN random permutations of length l.

8: R ;
9: for query q in Q do
10: for l from 0 to jDqj � 1 do
11: for perm C in GetPermsðDq; l; N;MÞ do
12: R R[GetPairsðq;Dq; C;MÞ

returnR
13: procedure: GETPAIRS

input: query q, document set Dq, selected documents list C,
evaluation metricM
output: a set of ranking pairs with weight and preference
fðq; C1; d11; d12; w1; y1Þ; ðq; C2; d21; d22; w2; y2Þ; . . .g

14: R ;
15: for all doc pair ðd1; d2Þ in Dq n C do
16: r1  ½C; d1�, r2  ½C; d2�
17: ifMðr1Þ 6¼Mðr2Þ then
18: w jMðr1Þ �Mðr2Þj
19: y ½½Mðr1Þ > Mðr2Þ��
20: R R[ ðq; C; d1; d2; w; yÞ

returnR

4.3.2 Prediction

In prediction stage, for each query, we sequentially and
greedily choose the document with the highest score and
append it to the ranking list. Specifically, the first document

is selected under initial subtopic importance from the whole
candidate set Dq. Once the top t� 1 documents have been
selected (i.e., jCj ¼ t� 1), we feed each document in Dq n C
into DSSA at the tth position one by one and choose the one
with the highest sdt . This process continues until all the
documents in Dq are ranked.

4.3.3 Time Complexities

The training time complexity with vanilla cell and “general”
operation is OðV � jQj � G � jDqj �QÞwhere V is the number of
iterations, jQj is the number of training queries, G ¼ N � jDqj2
is the number of sampled pairs where N is the number of
random permutations, jDqj is the number of candidate docu-
ments, andQ is the complexity for each position:

Q ¼ UðU þ EdÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
document sequence

representation

þKUEq þKR|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
subtopic
attention

þKEdEq þKR|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
scoring

; (20)

where the dominating terms are KUEq and KEdEq which
are proportional to the number of subtopics K. How to effi-
ciently handle a large number of subtopics is our future
work. The prediction complexity is OðjDqj2QÞ for each
query. We can limit jDqj to a small number (say 50), so the
prediction time can be reasonable. On a 24 core 2.1 GHz
CPU server, the ranking takes about 150 ms pre query. The
ranking time of xQuAD and C-GLS are:

xQuAD : OðjDqj2 �KRÞ;
C�GLS : OðV � jDqj �M3Þ; (21)

where we use R features and ListMLE to calculate the rele-
vance between documents and queries (subtopics) for
xQuAD; M is the size of the diverse subset (say 20) selected
from the candidate set Dq. Comparing to xQuAD, the matrix
multiplication of distributed representation is the bottle-
neck, which could be accelerated by GPU. C-GLS uses pre-
calculated distance to promote efficiency.

5 EXPERIMENTAL SETTINGS

5.1 Data Collections

We use the same dataset as [8] which consists of Web Track
dataset from TREC 2009 to 2012. There are 198 queries
(query #95 and #100 are dropped because no diversity judg-
ments are made for them), each of which includes 3 to 8 sub-
topics identified by TREC assessors. The relevance rating is
given in a binary form at subtopic level. All experiments are
conducted on ClueWeb09 [35] collection.

We use query suggestions of Google search engine as the
first-level subtopics. Then the first-level subtopics are issued
as queries to Google to retrieve their suggestions as the sec-
ond-level subtopics. Finally, 1,696 first-level subtopics and
10,527 second-level subtopics are collected, which are
released by Hu et al. [8] on their website.1 Almost all queries
have 9 or 10 first-level subtopics. But the first-level sub-
topics have variant number of second-level subtopics. The
histogram of the number of subtopics of a query is shown in
Fig. 6. For DSSA, we only use the first-level subtopics. For

1. Hierarchical diversification: http://www.playbigdata.com/dou/
hdiv
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HDSSA, we use both first and second level subtopics.
Following the existing work [8], we simply use uniform
weights in DSSA. For HDSSA, the weight of the root sub-
topic (the query) is 1. Then the weight is evenly distributed
to child subtopics in a top-down manner. Note that the
absolute value of the initial weights will not affect the final
score because of the normalization of softmax.

5.2 Evaluation Metrics

We use ERR-IA [36], a-nDCG [37], and NRBP [38], which are
official diversity evaluation metrics used inWeb Track. They
measure the diversity by explicitly rewarding novelty and
penalizing redundancy. D]-measures [39], the primary met-
ric used in NTCIR Intent [40] and IMine task [41], is also
included. We also use traditional diversity measures Preci-
sion-IA (denoted as Pre-IA) [4] and Subtopic Recall (denoted
as S-rec) [42]. Consistent with existing works [15], [16], [17]
and TRECWeb Track, all these metrics are computed on top
20 results of a ranking. We use two-tailed paired t-test to
conduct significance testingwith p-value < 0.05.

5.3 Baseline Models

We compare DSSA and HDSSA2 to various unsupervised
and supervised diversification methods. The non-diversified
baseline is denoted as Lemur. We use C-GLS [23], xQuAD
[5], PM2 [6], TxQuAD, TPM2 [7], HxQuAD, and HPM2 [8]
as our unsupervised baselines. We use ListMLE [43], R-LTR
[15], PAMM [16], andNTN [17] as our supervised baselines.
Top 20 results of Lemur are used to train supervised meth-
ods. Top 50 (i.e., jDqj) results of Lemur are used for diversity
re-ranking. To construct the representation of a query or a
subtopic, we use the top 20 (Z) documents. We use 5-fold
cross validation to tune the parameters in all experiments
based on a-nDCG@20, which is one of the most widely used
metrics. A brief introduction to these baselines is as follows:

Lemur. We use the same non-diversified results as [8].
They are produced by language model and retrieved using
the Lemur service3 of which the spams are filtered. These
results are released by Hu et al. [8] on the website.1

ListMLE. ListMLE is a representative listwise LTR
method without considering diversity.

C-GLS. We use k-means for clustering and tune the
parameters �, b, and a in the same way as [23].

xQuAD, PM2, TxQuAD, TPM2, HxQuAD, and HPM2.
These are competitive unsupervised explicit diversification
methods, as introduced in Section 2.2. All these methods
use � to control the importance of relevance and diversity.

HxQuAD and HPM2 use an additional parameter a to con-
trol the weight of each layer of the hierarchical structure.
Both � and a are tuned using cross validation. They all
require a prior relevance function to fulfill diversification
re-ranking. Following [15], we use ListMLE.

R-LTR, PAMM, andNTN. For PAMM,we use a-nDCG@20
as the optimization metric. We optimize NTN based on both
R-LTR and PAMM, denoted as R-LTR-NTN and PAMM-
NTN respectively.

To achieve optimal results, for R-LTR and PAMM, we
tune the relational function hSðRÞ from minimal, maximal,
and average. For PAMM, we tune the number of positive
rankings tþ and negative rankings t� per query. For NTN,
the number of tensor slices is tuned from 1 to 10. LDA is
used to generate distributed representations of size 100
for NTN and DSSA. For all these supervised methods,
the learning rate r is tuned from 10�7 to 10�1. For DSSA,
we have different settings possible. In our first set of results,
we will use “general” as the implementation of vector inter-
action operations A0 and S0 , LSTM with hidden size of 50 as
the cell of RNN. We set random permutation count as 10 in
list-pairwise sampling. Similarly, � of DSSA is tuned
by cross validation. We also test the impact of different
model settings and permutation counts on performance in
Sections 6.2 and 6.3 respectively. For HDSSA, we investigate
both the balanced (denoted as HDSSA-B) and the unbal-
anced settings (denoted as HDSSA). To avoid overfitting,
we use dropout [44] with probability 0.5 and L2 regulariza-
tion. The dataset is split into three parts, namely training,
validation, and testing. If the a-nDCG did not improve on
the validation set after a certain number of epochs or the
maximun epochs is reached, we stop the training process.

Similar to [15], we implement 18 relevance features and 6
diversity features, as listed in Table 5 and 6 respectively. We
collect the candidate and retrieved documents of all queries
and subtopics to generate the distributed representations.

6 EXPERIMENTAL RESULTS

6.1 Overall Results

The overall results are shown in Table 7. We find that DSSA
significantly outperforms all implicit and explicit baselines,
including both unsupervised and supervised. The improve-
ments are statistically significant (two-tailed paired t-test)
for all metrics, except S-rec. The results clearly show the
superiority of DSSA. Using hierarchical subtopics further
improves all metrics, which demonstrates the usefulness of
leveraging hierarchical subtopics.

Fig. 6. Histogram of the number of subtopics.

TABLE 5
Relevance Features

Name Description #Features

TF-IDF the TF-IDF model 5
BM25 BM25 with default parameters 5
LMIR LMIR with Dirichlet smoothing 5

PageRank PageRank score 1
#inlinks number of inlinks 1
#outlinks number of outlinks 1

Each of the first three features is applied to body, anchor, title, URL, and the
whole documents.

2. Data and code: http://www.playbigdata.com/dou/DSSA/
3. Lemur: http://boston.lti.cs.cmu.edu/Services/clueweb09_batch/
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(1) DSSA versus unsupervised explicit methods. DSSA
outperforms unsupervised explicit methods (xQuAD,
PM2, TxQuAD, TPM2, HxQuAD, and HPM2) on all
the measures. The relative improvement of DSSA over
HxQuAD and HPM2, the best unsupervised explicit
approaches, is up to 8.3 and 8.6 percent respectively
in terms of a-nDCG. The relative improvement of
HDSSA over HxQuAD and HPM2 is 10.9 and 11.2
percent respectively. This comparison shows the
great advantage of using supervised method for
learning the ranking function.

(2) DSSA versus supervised implicit methods. DSSA also
outperforms supervised implicit methods (R-LTR, PAMM,
R-LTR-NTN, and PAMM-NTN) by quite large margins.
The improvement over R-LTR-NTN and PAMM-
NTN, the best supervised implicit approaches is up
to 9.9 and 9.4 percent respectively on a-nDCG. This
result demonstrates the utility of taking into account
subtopics explicitly in supervised approaches. The
improvements are similar to those observed between
explicit approaches and implicit approaches in unsu-
pervised framework [5], [6], [7], [8]. The combination of
the two observations suggests that explicit modeling of
subtopics can improve result diversification, whether it
is in a supervised or unsupervised framework.

(3) HDSSA versus DSSA. HDSSA outperforms DSSA
on all the measures. Through paying attention to

subtopics of different granularities, HDSSA has the
potential to detect the most unsatisfied intents
and keep balance between general and fine-grained
intents. It also indicates that our framework is flexi-
ble enough to model hierarchical subtopics. HDSSA
outperforms HDSSA-B, which indicates that scoring
documents with different and tunable layer weights
is beneficial. However, the improvement of the hier-
archical subtopics over the flat list of subtopics is not
significant. A possible reason is that we calculate
attention and score for each subtopic separately,
which fail to fully explore the dependency among
the subtopics of different granularities. A promising
direction is that the calculation of attention and score
of parent subtopic is directly dependent on its child
subtopics. Modeling the subtopics in a more unified
and integrated way is our future work.

6.2 Effects of Different Settings

We conduct experiments with different settings of DSSA to
investigate whether the performance is sensitive to these set-
tings. Different aspects of settings are listed follow. For sim-
plicity, when investigating the impact of each aspect, we keep
other aspects the same as the settings specified in Section 5.3.

1) Representation generation methods: SVD, LDA, and
doc2vec with window size of 5.

2) Implementation of vector interaction operations A0
and S0 : “general” and “dot”.

3) RNN cell: vanilla, GRU, and LSTM cell.
4) Dimensionality: we test several representative set-

tings on the size of distributed representations Ed

and Eq, the size of hidden state U as (25, 10), (50, 25),
(100, 50), (200, 100).

5) Max-pooling: we experiment without using max-
pooling (denoted as DSSA-RNN) in subtopic atten-
tion component.

The results are reported in Table 8. We can observe that
DSSA does not heavily rely on specific settings. As for dif-
ferent representation generation methods, LDA has slightly
better results. doc2vec could have been more appropriate if
we had large datasets with more queries. The “general”
operation yields slightly better results. A possible reason is
that it is bilinear and thus is more powerful than “dot” to
model the interaction. GRU and LSTM cells yield slightly

TABLE 6
Diversity Features

Name Description

subtopic diversity Euclidean distance based on SVD
text diversity cosine-based distance on term vector
title diversity text diversity on title
anchor text diversity text diversity on anchor
link-based diversity link similarity of document pair
URL-based diversity URL similarity of document pair

Each feature is extracted over a pair of documents.

TABLE 7
Performance Comparison of All Methods

Methods ERR-IA a-nDCG NRBP D]-nDCG Pre-IA S-rec

Lemur	1 .271 .369 .232 .424 .153 .621
ListMLEu .287 .387 .249 .430 .157 .619

C-GLS	2 .288 .391 .246 .435 .153 .640
xQuAD	3 .317 .413 .284 .437 .161 .622
TxQuAD	4 .308 .410 .272 .441 .155 .634
HxQuAD	5 .326 .421 .294 .441 .158 .629
PM2	6 .306 .411 .267 .450 .169 .643
TPM2	7 .291 .399 .250 .443 .161 .639
HPM2	8 .317 .420 .279 .455 .172 .645

R-LTRv .303 .403 .267 .441 .164 .631
PAMMw .309 .411 .271 .450 .168 .643
R-LTR-NTNx .312 .415 .275 .451 .166 .644
PAMM-NTNy .311 .417 .272 .457 .170 .648

DSSA .356$ .456$ .326$ .473$ .185$ .649	1	3u

HDSSA-B .366$ .465$ .335$ .475$ .186$ .648	1	3u

HDSSA .369$ .467$ .337$ .478$ .187$ .653	1	3u

The best result is in Bold. Statistically significant differences between DSSA
and baselines are marked with various symbols. $ indicates significant
improvement over all baselines (p < 0.05).

TABLE 8
Effects of Different Settings

Methods ERR-IA a-nDCG NRBP D]-nDCG Pre-IA S-rec

SVD .348 .450 .315 .470 .184 .646
LDA .356 .456 .326 .473 .185 .649
doc2vec .351 .452 .318 .471 .184 .646

general .356 .456 .326 .473 .185 .649
dot .347 .450 .314 .470 .184 .647

vanilla .354 .454 .322 .471 .184 .649
GRU .357 .457 .326 .473 .185 .649
LSTM .356 .456 .326 .473 .185 .649

DSSA-RNN .342 .445 .306 .466 .172 .657
DSSA-RNNMP .356 .456 .326 .473 .185 .649
HDSSA .369 .467 .337 .478 .187 .653
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better results than vanilla cell because of their ability of
modeling long-term dependency. The difference is however
small. This may be due to that with a limited number of
training data, a model is unable to take advantage of its
higher complexity to capture the fine-grained subtlety.
Results with different size of distributed representation
and hidden state shown in Fig. 7 also indicate no strong
correlation between performance and settings. a-nDCG
remains above 0.45 using different sizes. The best perfor-
mance is achieved using 100-dimensional representation
and 50-dimensional hidden state. This suggests that high
dimensionality may result in overfitting. Without using
max-pooling, a-nDCG drops to 0.445, which demonstrates
the usefulness of using max-pooling to enhance subtopic
attention. The small differences between different settings
suggest that DSSA is a stable and robust framework. Note
that we use both distributed representations and relevance
features, which are complementary to each other. This may
be one of the reasons of the stability.

6.3 Effects of Different Optimization Methods

Results in Table 9 shows that list-pairwise is more effective
than MLE and PAMM. This confirms our earlier intuition
that list-pairwise optimization corresponds better to the sit-
uation of diversification ranking than the two other meth-
ods. Note that even using MLE or PAMM as optimization
methods, DSSA could also achieve state-of-the-art perform-
ances, which confirms the effectiveness of our explicit learn-
ing framework from another perspective.

We vary the number of random permutations used in
list-pairwise sampling from 0 to 20 to investigate its effect.
As depicted in Fig. 7b, the performance does not heavily
rely it. The best performance is achieved around 10. More
permutations lead to lower effectiveness, which could be
explained by model overfitting.

6.4 Effects of Different Layers in HDSSA

We further investigate the effects of using different layers in
HDSSA in Table 10, where HDSSA-1 only uses first-level
subtopics and HDSSA-2 only uses second-level subtopics.
Basically, using both levels yields the best results and the

second-level subtopics yield better performance than the
first-level. This experimental result is consistent with
learned parameter b for controlling layer importance:
b3ðsecond� levelÞ > b1ðqueryÞ > b2ðfirst� levelÞ. A possi-
ble explanation is that the second-level subtopics are more
informative and specific than the first-level so that it can
consider subtle variation of intent coverage (see Section 6.6
for further illustration). Note that using hierarchical sub-
topics outperforms both models using a single level of sub-
topics in terms of ERR-IA and a-nDCG. This indicates the
effectiveness of modeling intents on different granularities.

6.5 Visualization and Discussion of DSSA

We visualize the ranking results of DSSA and the variation
of subtopic attention to better understand why DSSA per-
forms well.

We show the top 5 ranking results of query #58 and #182 in
Fig. 8 to illustrate why DSSA outperforms implicit learning
methods. We choose PAMM-NTN as comparison method,
which is the best existing learning method. In Fig. 8, white
means relevant and black means irrelevant. For query #58,
DSSA ranks a document relevant to subtopics i3 and i4 first
and a document relevant to i1 and i2 at the second position,
while the first two documents of PAMM-NTN cover the
same subtopics. Note that there is no document covering i5 in
the candidate set. For query #182, DSSA successively chooses
documents that cover i1, i3, i2, and i4. One additional intent is
satisfied at every position. PAMM-NTN, however, just cov-
ers i1 and i2 by top 5 documents, which is obviously not opti-
mal. We see that the unequal and varied subtopic attention is
capable of discovering unsatisfied subtopics at different posi-
tions, which eventually leads tomore subtopic coverage.

To study attention mechanism, we further visualize the
variation of subtopic attention of top 5 documents of query
#182, namely “quit smoking”, which has 4 official subtopics
(i1 to i4), as shown in Fig. 9. The top part is subtopic attention
variation and the bottom part is relevance judgment. For
attention part, the darker the cell is, the lower the attention
(weight) on this subtopic is. Note that we actually leverage
query suggestions of Google (z1 to z7) to serve as subtopics,
which do not match official ones exactly. We manually align
subtopics mined from Google to official ones. At the begin-
ning, all the subtopics have equal attention. The first selected

Fig. 7. Performance tendency of different settings.

TABLE 9
Effects of Different Optimization Methods

Methods ERR-IA a-nDCG NRBP D]-nDCG Pre-IA S-rec

MLE .349 .446 .315 .462 .176 .644
PAMM .348 .445 .315 .463 .175 .644
list-pairwise .356 .456 .326 .473 .185 .649

TABLE 10
Effects of Different Layers in HDSSA

Methods ERR-IA a-nDCG NRBP D]-nDCG Pre-IA S-rec

HDSSA-1 .356 .457 .323 .475 .186 .654
HDSSA-2 .364 .464 .333 .480 .190 .655
HDSSA .369 .467 .337 .478 .187 .653

Fig. 8. Case study for DSSA and PAMM-NTN. White means relevant
and black means irrelevant.
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document d1 is relevant to i1, i.e., to the Google subtopics z1,
z2, z3 and z4. We see that the attention to these latter
decreases at second position. Then the document d2 is
selected, which is relevant to uncovered i3. We see that the
attention to the corresponding z6 begins to diminish from the
third position. d3 and d4 satisfy additional i2 and i4 respec-
tively, which leads to the reduction of attention on z5 and z7
at the following position. The subtopic attention, initialized
as uniform distribution, ends up with more emphasis on z4,
z6, and z7. This example illustrates how the unequal and var-
ied attention drives the model to emphasize different sub-
topics at different positions, which is crucial in explicit
diversification. This example also shows a potential problem
inherent for any method using automatically discovered
subtopics: those topics may be different from the ones
defined by human assessors. Equal distribution is assumed
on all the subtopics zi. However, this implies an unequal
distribution among the manually defined subtopics (more
emphasis is put on i1). Assuming an equal distribution at the
beginning may not necessarily be the best approach. We will
deal with this problem in our futurework.

6.6 Visualization and Discussion of HDSSA

We also visualize the ranking results of HDSSA and the var-
iation of subtopic attention to investigate the effect of using
hierarchical subtopics.

We show the top 5 ranking results of query #103 and #139
in Fig. 10 to illustrate the superiority of HDSSA over DSSA.
For query #103, HDSSA covers all subtopics within 5
results, while DSSA fails to satisfy i3. For query #139,
HDSSA successfully selects 3 adjacent documents that cover
i2, i1, and i3 respectively, while DSSA ignores i3. The above
cases demonstrate the usefulness of the hierarchical sub-
topics, which can detect unsatisfied intents based on differ-
ent granularities.

In Fig. 11, we visualize the variation of subtopic attention
of HDSSA on query #103 (“madam cj walker”), which has 3
official subtopics listed at the bottom. We collected 9 first-
level subtopics and 35 second-level subtopics to construct
the hierarchical structure. The first column of attention
(attention of d1) is the initial weight of all subtopics, which
is allocated in a top-down manner so that each layer obtains
equal attention at the beginning. After selecting a document

Fig. 9. Subtopic attention variation of query #182. The top part is atten-
tion and the bottom part is relevance judgment.

Fig. 10. Case study for HDSSA and DSSA. White means relevant and
black means irrelevant.

Fig. 11. Subtopic attention variation of query #103. The top part is atten-
tion and the bottom part is relevance judgment. To save space, we use
“
” to replace the query string “madam cj walker” in all subtopics.
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satisfying i1 and i2, the attention of next position should
turn to i3 which is “Madam C. J. Walker’s involvement in
the political and social issues”. If we only use the first-level
subtopics which are not specific enough, we cannot find
suitable subtopics to match i3. However in second-level sub-
topics, z1;6;4 (“timeline madam cj walker achievements”) has
the potential to cover her social and political achievements.
Using hierarchical subtopics is useful to perceive the subtle
variation of unsatisfied intents. So it can further improve
the diversity of the search results. The attention on different
levels and subtopics keeps changing throughout document
selection process in Fig. 11, which is beneficial to introduce
diversity on different granularities. In fact, the latent intents
of real users are much more than 3 official ones. Hierarchi-
cal subtopics keep balance between crude and fine-grained
intents, which have potential to achieve more diversity even
beyond the official judgement.

7 CONCLUSIONS

In this paper, we propose a general learning framework
DSSA to model subtopics explicitly for search result diver-
sification. Based on the sequence of selected documents,
unequal and varied subtopic attention is calculated, driving
the model to emphasize different subtopics at different posi-
tions. This is the first time that attention mechanism is used
to model the process. We further instantiate DSSA using
RNN and max-pooling to handle both distributed represen-
tations and relevance features, which outperforms signifi-
cantly the existing approaches. The results confirm that
modeling subtopics explicitly in a learning framework is
beneficial and effective and this also avoids heuristically
defined functions and parameters. Through using hierarchi-
cal subtopics, performance is further improved because of
the consideration of subtopics of different granularities.
However, accurately modeling the interaction among docu-
ments and subtopics is still challenging. There are many
other more complex implementations besides our particular
way, which will be investigated in future work. The pro-
posed model contains a number of parameters to be
learned. This requires a large number of training data. Col-
lecting more training data to fully unlock the potential of
the model is another direction. Finally, this work only deals
with the learning of a ranking function, assuming that sub-
topics have been obtained in advance and document and
query representations have already been created. In prac-
tice, mining subtopics and learning these representation are
another interesting aspects, which could be incorporated
into our framework, provided with sufficient training data.
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