Regenerating sentences from Universal Dependencies
Structures

Guy Lapalme
RALI-DIRO, Université de Montréal
lapalme@iro.umontreal.ca

June 7, 2021

Abstract

We describe a system for regenerating sentences from English or French Universal
Dependencies structures (UD). A symbolic approach is used to transform the depen-
dency tree into a tree of constituents which is then regenerated as a sentence in the
original language. We show how the output of the system can be used as a validation
tool for UDs. We also describe a web-based tool for identifying UD tokens matching
certain patterns.

Context of the work

We started to work on Universal Dependencies (UD) structures in the context of the Second
Workshop on Multilingual Surface Realization [6] which used transformed Universal Depen-
dencies structures as input to a surface realizer. This realizer [5] used Prolog for parsing the
input structures from which a constituent tree structure was built and sent to JISREALB, a
JavaScript English realizer that we have been developing for some time. The approach we
followed was to first build a realizer for the original Universal Dependencies and then adapt it
to take into account the transformations used for the competition: i.e., scrambling of words
and abstracting relations keeping only content words.

Alessandro Sordoni, who was aware of our work asked if it was possible to use the UDs
produced by a statistical parser (Stanza [9]) of an affirmative sentence to produce its negative
form automatically. These modified sentences would then be used as a training corpus to
teach the meaning of negation to a neural language mode [3]1. This system also used Prolog
for parsing and creating a JSON-based tree constituent structure that was interpreted by
JSREALB.

We now describe UDREGENERATOR which uses a slightly different approach: the whole
transformation process (parsing of Universal Dependencies, transformation and text gener-
ation) is performed in JavaScript and is now integrated in a web page (see Figure . It

lapalme@iro.umontreal.ca

allows entering Universal Dependencies structures, realization of the sentence from the in-
formation in the dependencies and comparison of the realized sentence with the original.
The transformed constituent expression can also be edited for regenerating the sentence.
UDREGENERATOR. does not allow the modification of the UD file which should be edited
externally and reloaded. The current UD is easily found in the original file using the line
number or the sentence id. UDREGENERATOR can also be used as a NODE.JS module for
batch processing a UD dependency file.

We initially used UDREGENERATOR to study the coverage of JSREALB of English and
French by checking to what extent it was possible to recreate verbatim the original sentences.
But as we will show later, this experiment also allowed us to measure to what extent the
lexical information in UD is exact or complete.

We first recall the UD input format and describe the tree-based representations used
by our system using the example from Figure [I} Section [3] presents the core algorithm for
transforming between the these representations. Section 4] describes our experience in using
UDREGENERATOR for validating UDs. We conclude with some lessons learned from this
development. The appendix [6] describes a tool for identifying tokens with specific character-
istics within an UD file.

1 Universal Dependencies

Universal Dependencies structures [§ (UD) is an open community effort to create cross-
linguistically consistent treebank annotation for many languages within a dependency-based
lexicalist framework. The latest version (2.8) [11] provides 202 treebanks in 114 languages.
This data has been developed for comparative linguistics and is used in many NLP projects
for developing parsers, considering UDs as gold standard.

The UD structures are provided in tab separated files in a systematic formatE]. A UD
annotation is a series of lines with the following 10 fields, an empty field is indicated by an
underscore (_).

1D word index, starting at 1

FORM how the token is written out

LEMMA the lemma of the FORM

UPOS wuniversal part of speech tag of word

XPOS language specific part of speech (ignored here)

FEATS list of morphological features

HEAD ID of the head or 0 for the head

DEPREL name of the universal dependency relation to the HEAD

DEPS enhanced dependency graph (not used in our work)

MISC supplementary annotation, such a spacing before or after the token

'https://universaldependencies.org/format.html

https://universaldependencies.org/format.html

Universal Dependencies graph/tree display with regeneration using
jsRealB

[Show instructions | [Selectan UD file | Example.conllu Version francaise
1D FORM | LEMMA UPOS | XPOS FEATS HEAD | DEPREL | DEPS MISC
1/Some |some DET DT 3 det |
2 |alternative |alternative ADJ JJ Degree=Pos 3 amod |
3|treatments {treatment NOUN NNS |Number=Plur 5 nsubj |
4|may may AUX MD VerbForm=Fin 5|aux |
5|place place VERB |VB VerbForm=Inf 0 root |
6| the the DET DT Definite=Def]PronType=Art 7 det |
7 child child INOUN _[NN Number=Sing 5/0bj
8 at at ADP IN 9 case
9/risk risk NOUN |NN Number=Sing 3 obl
10|. : PUNCT |. 5 punct |
Show only
FD‘rﬁerences [T) Warnings (] Non Projective (] parse | 1 sentence [Some altarnative treatments may place the child at risk .
Display as Spacing in pixels: Word Letter

- F@_ﬂ

Some alternative treatments may place the child at risk .

line |3
sent_idex-1

text |Some alternative treatments may place the child at risk .
TEXT |Some alternative treatments may place the child ot risk.
no differences

1 S(NP(D("some"),
A("alternative™),
N("treatment").n("p")),
VP(V("place").t("b"),

NP(D("the"),
NC"child").n("s")),

PP(P("at"),
NC"risk™).n("s")))).typ({mod: "perm"})

00~ Y L1 £ WM

[Realize | [Hide Constituent Tree]

/N P. /L\\‘-VP
D A T~ v="np pp
] oYy Py

some alternative treatment pléce the child at risk

Figure 1: Web page (http://rali.iro.umontreal.ca/JSrealB/current/demos/
UDregenerator/UDregenerator-en.html) for exploring UDs in a local file that is parsed
to build a menu of their reference sentences in the middle of the page. Once a sentence is
chosen, the fields of its tokens are displayed in the table at the top and the graph of its
dependency links is displayed below the menu. A table below the graph shows information
about this UD: the line number in the file, its sent_id and reference text (text), the
regenerated text by JSREALB (TEXT). When there are differences between the expected text
and realized tex, they are highlighted. The corresponding JSREALB expression is displayed
in an editor that allows it to be changed and be re-realized. The tree of constituents
corresponding to the JSREALB expression is displayed at the bottom. Checkboxes can be
clicked to narrow the sentences in the menu to those for which there are differences between
the reference’s text and the generated sentence, those for which JSREALB issued warnings
or those with non-projective dependencies.

http://rali.iro.umontreal.ca/JSrealB/current/demos/UDregenerator/UDregenerator-en.html
http://rali.iro.umontreal.ca/JSrealB/current/demos/UDregenerator/UDregenerator-en.html

Comments are added to the file using lines with a number sign (#). There are conventional
comments such as: a line starting with # id = uniquely identifies a dependency structure
in a file and a line starting with # text = indicates the text of the sentence for which the
dependency structure is defined. A file can contain many UDs that are separated by a an
empty line.

Many of these dependency structures are the result of manual revisions of automatic
parses which are often quite difficult to check manually as there are so many details to take
into account. As we will show in Section |4, regenerating from the source revealed small
mistakes, most often omissions, in quite a few of the structures. It is indeed much easier to
detect errors in a figure or in a generated sentence than in list of tab separated lines.

2 UDregenerator

Figure 1| shows the web-based interface of UDREGENERATOR using the UD of a simple
English sentence. The table at the top shows the token fields of the selected UD in the menu
with the corresponding dependency link structure in the middle.

The original UD structure is parsed to build a dependency tree which is then converted
to a tree of constituents realized using JSREALBE], a web-based English and French realizer
written in JavaScript. Only the English realizer is illustrated here but there is also a web
page for using the system dealing with the French version of UD. The bottom of Figure
shows the tree of constituents built by JSREALB after processing the UD.

An UD realizer might seem pointless, because most UD annotations are created from
realized sentences either manually or automatically. As UDs contains all the tokens in their
original form (except for elision in some cases), the realization can be obtained trivially by
listing the FORM in the second column of each line.

Taking into account the tree structure, another baseline generator can be implemented
using an in-order traversal of the tree and output the forms encountered. This method does
not work for non-projective dependencies [4] because words, in this case, under a node are
not necessarily contiguous. We use this property in our system to detect non-projective
dependencies which account for about 5% of the dependencies in our corpora. But even
for projective ones, different trees can be linearized in the same way. However quite often,
non-projective dependencies are a symptom of badly linked nodes that should be checked.
Figure [2[shows a non-projective dependency which is more easily seen when the dependencies
are displayed as a tree in which some lines cross. In this case, the HEAD of the token about
should be talking and not what. This is why the generated TEXT inserts about immediately
after what. This figure also illustrates a type of omission error: the FEATS field shown in
tooltip does not specify that the verb should be at the second person, so JSREALB produces
the default third person, thus generating s instead of are.

What we propose in this paper is UDREGENERATOR that uses only the lemmas and
the morphological and syntactic information contained in the UD features and relations to

Zhttp://rali.iro.umontreal.ca/rali/?q=en/jsrealb-bilingual-text-realiser

http://rali.iro.umontreal.ca/rali/?q=en/jsrealb-bilingual-text-realiser

SNOW ory

’—Diﬁerencesf:“l Warnings (] Non Projective @ [Parse | 41 sentences [*really, i have no idea what you're talking about

sy

adwlm
nit X

U
nsubj punc

l%f - r\l

det

ase_ |

really , 1 have no idea what you T falking abou .
line 15615 i 9 be AUX Mood=Ind|Tense=Pres|VerbForm=Fin i

sent_id email-enronsent23 06-0005

text |really, i have no idea what you're talking about.
TEXT [Really , I have no idea what about you is talking.
3 differences

Figure 2: A non-projective UD created by a bad HEAD link for the word about which is seen
in the tree display and in the bad word ordering in the generated sentence. Given that the
second person is not specified in the FEATS field for the verb be, shown in the tooltip, it gives
rise to an ungrammatical sentence as JSREALB uses the third person by default.

realize a sentence from scratch which can be compared to the original. Interesting use cases
for such a realizer could be:

e UDREGENERATOR could be used as the How to say module of an NLG system that
already provides a What to say module.

e An UD structure obtained by an automatic parser can be used to create variations of
the original sentence using JSREALB. We have used this facility to create a training
corpus of negated sentences; we have also created a training corpus of questions from
affirmative sentences found on the web for improving a question-answering system [1J.

e Providing help to annotators to check if the information they entered is correct by
regenerating the sentence from the dependencies. This enables to catch more types of
errors in the annotation; this is not foolproof, but Section [4 describes our experience
with this use case.

We now briefly describe the internal representations used by our system.

2.1 UD in JSON

The first step in UDREGENERATOR is to parse a group of lines in CONLLU format corre-
sponding to UD structure in order to build the corresponding tree using node objects that
keep track of the values of the fields. Once all nodes have been created, they are linked back
to their parent using the head field, the root being identified by 0 in its head field. The
features are transformed into an object to ease checking their values.

{deprel , upos, lemma, form, id, feats,
list of left children,
list of right children}

This representation keeps intact the parent-child relations and the relative ordering be-
tween the children, it also keeps track of the fact that some children occur to the left or to
the right of the parent. This is easily inferred from the ID of each token compared with the
value of its HEAD.

This link structure corresponds to a tree structure (see Figure |3|) defined using the head
field that refers to the id of the parent. This tree structure can also be displayed in the web
page by selecting in the menu in the middle of the page.

Somme alterfative treatments m:ay plécc t{e child 4t risk .

{"deprel":"root", "upos":"VERB", "lemma":"place", "form":"place", "id":5, "head":0,
"feats":{"VerbForm":"Inf"},
"left":[{"deprel":"nsubj", "upos":"NOUN", "lemma":"treatment", "form":"treatments", "id":3,
"head":5, "feats":{"Number":"Plur"},
"left":[{"deprel":"det", "upos":"DET", "lemma":"some", "form":"Some", "id":1,
"head" :3},
{"deprel":"amod", "upos":"ADJ", "lemma":"alternative",
"form":"alternative", "id":2, "head":3, "feats":{"Degree":"Pos"}}1},
{"deprel":"aux", "upos":"AUX", "lemma":"may", "form":"may", "id":4, "head":5,
"feats":{"VerbForm":"Fin"3}}],
"right":[{"deprel":"obj", "upos":"NOUN", "lemma":"child", "form":"child", "id":7,
"head":5, "feats":{"Number":"Sing"},
"left":[{"deprel":"det", "upos":"DET", "lemma":"the", "form":"the", "id":6,
"head":7, "feats":{"Definite":"Def","PronType":"Art"}}1},
{"deprel":"obl", "upos":"NOUN", "lemma":"risk", "form":"risk", "id":9, "head":5,
"feats":{"Number":"Sing"},
"left":[{"deprel":"case", "upos":"ADP", "lemma":"at", "form":"at", "id":8,
"head":9}]13%},
{"deprel":"punct", "upos":"PUNCT", "lemma":".", "form":".", "id":10, "head":5}]}

Figure 3: Tree structure extracted from the dependency structure of Figure [1| and its corre-
sponding JSON representation.

2.2 jsRealB

JSREALB[T] is a surface realizer written in JavaScript similar in principle to SIMPLENLG [2]
in which programming language instructions create data structures corresponding to the
constituents of the sentence to be produced. Once the data structure (a tree) is built in
memory, it is traversed to produce the list of tokens of the sentence.

The data structure is built by function calls whose names were chosen to be similar to
the symbols typically used for constituent syntax trees’t

e Terminal: N (Noun), Vv (Verb), A (adjective), D (determiner) ...
e Phrase: s (Sentence), NP (Noun Phrase), VP (Verb Phrase) ...

Typically in JavaScript, identifiers starting with a capital letter are constructors not
functions, however, in linguistics, symbols for constituents start with a capital letter, so we
kept this convention. Features added to the structures using the dot notation, called options,
can modify their properties. For terminals, their person, number, gender can be specified.
For phrases, the sentence may be negated or set to a passive mode; a noun phrase can be
pronominalized. Punctuation signs and HTML tags can also be added.

For example, in the JISREALB structure of Figure[I] plural of treatment is indicated with
the option n("p") where n indicates the number and "p" the plural. Agreements within the
NP and between NP and VP are performed automatically, although this feature is not often
used in this experiment because features on each token provide, in principle, all the necessary
morphological informationE]

The affirmative sentence is modified to use the permission modal using the property
{typ({"mod" : "perm"}) to be realized by the verb may. The modification of a sentence
structure is an interesting feature of JSREALB. Once the sentence structure has been built,
many variations can be obtained by simply adding a set of options to the sentences, to
get negative, progressive, passive, modality and some type of questions. For example, the
interrogative form What may place the child at risk? is generated by adding "int":"was" to
the object given as parameter to .typ () at the end of the original JISREALB expression. This
feature is not needed in this work, but it was used for creating questions from affirmative
sentences to build a training corpus for a neural question-answering system [I].

3 Building the Syntactic Representation

We now describe how a UD in JSON is transformed into a Syntactic Representation (SR)
which is used as input to JSREALB. The principle is to reverse engineer the UDs annotation
guidelineﬂ. This is similar to the method described by Xia and Palmer [10] to recover the

3See the documentation http://rali.iro.umontreal.ca/JSrealB/current/documentation/user.
html?lang=en for the complete list of functions and parameter types.

*Section IZ_L] will show that, unfortunately, this is not always the case.

Shttps: /7universa1dependencies .org/guidelines.html

http://rali.iro.umontreal.ca/JSrealB/current/documentation/user.html?lang=en
http://rali.iro.umontreal.ca/JSrealB/current/documentation/user.html?lang=en
https://universaldependencies.org/guidelines.html

syntactic categories that are projected from the dependents and to determine the extents of
those projections and their interconnections.

Although this projection process is theoretically simple, there are some peculiarities when
it is applied between two predefined formalisms for which the idiosyncrasies must be taken
into account. In this case, the UD relations with features being associated with each token
must be mapped into JSREALB constituents with options that are applied either to a ter-
minal or a phrase. We now give more detail on the mapping process for generating words
using the morphological information associated with tokens and for generating phrases from
dependency relations.

3.1 Morphology

Terminals in UD are objects whose left and right lists of children are empty. They are
mapped to terminal symbols in JSREALB. So we transform the JSON version of the UD
notation to the SR one by mapping lemma and feature names. The following table gives a
few examples:

JSON fields SR
"upos":"NOUN", "lemma":"treatment", N("treatment") .n("p")
"feats":{"Number":"Plur"}
"upos":"VERB", "lemma":"lean", V("lean") .t ("ps")
"feats":{"Mood":"Ind","Tense":"Past"}
"upos":"PRON", "lemma":"its", Pro("me").c("gen") .pe("3")
feats":{"Gender":"Neut","Number":"Sing", .g("n") .n("s")
"Person":"3","Poss":"Yes","PronType":"Prs"}

As shown in the last example, we had to normalize pronouns to what JSREALB considers
as its base form. In the morphology principles of UDP it is specified that treebanks have
considerable leeway in interpreting what “canonical or base form” means. In some English
UD corpora, the 1lemma of a pronoun is almost always the same as its form; it would have been
better to use the tonic form. We decided to lemmatize further instead of merely copying the
lemma as a string input to JSREALB so that verb agreement could eventually be performed.
English UDs do not seem to have a systematic encoding of possessive determiners such as his
which, for JSREALB at least, should be POS-tagged as a possessive determiner. These are
defined as pronouns in some sentence or determiners in others, we found even cases of both
encodings occurring in the same sentence. As the documentation seems to favor pronoung’|
we had to adapt our transformation process to deal with these errors as they occur quite
often. This problem is less acute in the French UDs.

Shttps://universaldependencies.org/u/overview/morphology.html
"https://universaldependencies.org/en/feat/Poss.html indicates that his can be marked as a pos-
sessive pronoun.

https://universaldependencies.org/u/overview/morphology.html
https://universaldependencies.org/en/feat/Poss.html

What should be a lemma is an hotly debated subject on the UD GitHub, but there are
still too many debatable lemmas such as an, n’t, plural nouns etc. In one corpus, lowercasing
has been applied to some proper nouns, but not all. We think it would be preferable to apply
a more aggressive lemmatization to decrease the number of base forms for helping further
NLP processing that is often dependent on the number of different types. The lexicons for
JSREALB being sufficiently comprehensive for most current uses (34K lemmas for English
and 53K lemmas for French), they are still unknown lemmas for specialized or informal
contexts. Our experience shows that, most often, unknown lemmas are symptoms of errors
in the lemma or the part of speech fields. Section 4.1] shows some examples encountered in
the corpora.

3.2 JSON notation of UD to Syntactic Representation

The goal is to map the tree representation of the dependencies to a tree of constituents that
can be used by JSREALB for realizing the sentence. According to the annotation guidelines,
there are two main types of dependents: nominals and clauses which themselves can be
simple or complex.

The head of a Syntactic Representation is determined by the terminal at the head of
the dependencies. The system scans dependencies to determine if the sentence is negative,
passive, progressive or interrogative depending on whether combinations of aux, aux:pass
with proper auxiliaries (possibly modals) or interrogative advmod are found. When such
a combination is found, then these relations are removed before processing the rest. The
appropriate JSREALB sentence typ will be added to the resulting Universal Dependencies.
For example, in Figure [I] the auxiliary may is removed from the tree and the sentence is
marked to be realized using the permission modal.

All dependencies are transformed recursively; as each child is mapped to a SR, chil-
dren list are mapped to a list of SR. Before combining the list of Syntactic Representations
into a JSREALB constituent, the following special cases are taken into account, for English
sentences:

1. a UD with a copula is most often rooted at the attribute (e.g. mine in Figure {4)), it
must be reorganized so that the auxiliary is used as the root of a verb phrase (VP):

s
NI"/’} \VP

. FERY LY
nsubj o’ N v wp
‘drt f_:dvg%lﬁ purct PED Q
Wwor v Ul ¥ fe cir be me |
The car 15 not mine ! the car be me !

Figure 4: On the left, the dependency tree corresponding to the sentence The car is not mine!;
at right, the dependency tree after transformation. JSREALB realizes the original sentence
from this tree.

2. A verb at the infinitive tense is annotated in UD as the preposition to before the verb,
so this preposition is removed before processing the rest of the tree, it is reinserted at
the end;

3. An adverb (from advmod relation) is removed from processing the rest and added to
the resulting VP at the end;

4. If the head is either a noun, an adjective, a proper noun, a pronoun or a number, it is
processed as a nominal clause mapped to a NP enclosing all its children UDs.

5. If the head is a verb: check if the auxiliary will is present, then a future tense option
will be added to the verb; in the case of the do auxiliary, copy feature information
(tense and person) into the JSREALB options.

6. Otherwise, bundle Syntactic Representations into a sentence S, the subject being the
first child and the VP being the second child.

7. Coordinate VPs and NPs must also be dealt specially because the way that JSREALB
expects the arguments of a CP is different from the way coordinates are encoded in
UDs where the elements are joined by conj relations. in JSREALB, all these elements
must be wrapped in a global CP, the conjunction being indicated once at the start.

_ﬂ_ﬂﬁ""—_ \1_'_‘_‘—'—-—-—._._._,___‘_‘___‘_‘_
MLP%\

conj

—nmod CC NP . NP
Case COMj det D"'/Pr \"‘Q D//é ‘H"‘*}{
such as Finland , Poland and the Baltic States and such as Finland Poland the Baltic state

Figure 5: The graph at the left, a subgraph of the UD w02013093 in en_pud-ud-test.conllu,
illustrates the UD encoding of coordinated nouns Finland, Poland and the Baltic States; the
right part shows the expected dependency tree by JSREALB.

We had originally implemented this tree-to-tree mechanism in Prolog (15 rules in 100 lines
of commented and indented code) by reading the annotation guidelines and then refining by
experimenting with the UD corpus. For UDREGENERATOR we converted this approach in
JavaScript which unfortunately is much less appropriate for this type of transformation. On
top of the fact that structure matching in JavaScript is more cumbersome than in Prolog,
the feature that we missed the most and was more error-prone is the fact that in Prolog, it is
easy to transform a tree to check for a certain condition and, when it is not met, backtracking
resets it to its original state and this can occur at any nested levels. This is not the case in
JavaScript where tree modifications are much more delicate to undo, so we had to carefully
find an ordering of transformations so that tree modifications to a certain step would not
have adverse effects later.

10

This exercise in transforming UD structures to JSREALB reveal an important difference
in their level of representation. By design UD stays at the level of the form in the sentence,
while JSREALB works at the constituent level. For example, in UD, negation is indicated by
annotating not and the auxiliary elsewhere in the sentence, while in JSREALB the negation is
given as an option for the whole sentence. So as shown above, the structure is checked for the
occurrence of not and an auxiliary to generate the .typ({neg:truel}) option for JSREALB
(see Figure ; these dependents are then removed for the rest of the processing. Similar
checks must also be performed for passive constructs, modal verbs, progressive, perfect and
even future tense in order to abstract the UD annotations into the corresponding structure
for ISREALB.

3.3 Working with French

As JSREALB can also be used for realizing sentences in French and that many UDs are
available in French, we adapted for French the methodology described in the previous sec-
tion. For morphology, we changed the lemmas for pronouns and numerals. Fortunately, the
ambiguity between pronouns and determiners seldom occurs in the French UDs, so this step
was more straightforward.

The transformation for clauses stays essentially the same as for English, except that there
is no need to cater for the special cases for modals, future and infinitives.

4 Experiments

We experimented with version 2.8 of UD, the most recent at the time of writing. UDREGENERATOR
can be used interactivelyﬁ, but it can also be used as a NODE.JS module to process a whole
corpus and display at a console, the results and the differences between the original text and
the regenerated one.

The following subsections describe our experience running UDREGENERATOR on both
the English and French corpora which shows that the system can handle all sentences and
is quite fast: about 1 milliseconds per sentence on a commodity Mac laptop. When all
lemmas of UD structure appear in the JSREALB lexicon and used with the appropriate
features, UDREGENERATOR creates a tree and realizes the corresponding sentence. In other
cases, JSREALB emits warnings so that either the unknown words can either be corrected
or added to the lexicon of JSREALB for the future; in those cases, JSREALB inserts the
lemma verbatim in the generated string which works out all right in English which is not
too morphologically rich. But in many cases, these erroneous lemmata should be more
closely checked. The tokens of the generated sentence are then compared with the tokens
of the original text using the Levenshtein distance ignoring case and spacing. When there
are differences as shown in Figure [2| they are highlighted in the output or the display;
the number UDs with differences are called #diff in the following tables. Differences can

8http://rali.iro.umontreal.ca/JSrealB/current/demos/UDregenerator/UDregenerator—en.
html

11

http://rali.iro.umontreal.ca/JSrealB/current/demos/UDregenerator/UDregenerator-en.html
http://rali.iro.umontreal.ca/JSrealB/current/demos/UDregenerator/UDregenerator-en.html

Corpus type F#sent #toks #nPrj #diff #lerr %regen Y%terr %nPrj
ewt dev 2001 25149 44 987 219 51% 1% 2,2%
test 2077 25097 41 970 174 53% 1% 2,0%
train 12 543 204 584 462 6780 1698 46% 1% 3, 7%

gum dev 843 16 164 49 486 153 42% 1% 5,8%
test 895 16 066 43 478 149 47% 1% 4.8%
train 5664 102 258 263 3204 1073 43% 1% 4,6%
lines dev 1032 19170 102 664 228 36% 1% 9,9%
test 1035 17 765 67 645 257 38% 1% 6,5%
train 3176 57 372 254 2040 702 36% 1% 8,0%
partut dev 156 2722 4 83 33 47% 1% 2,6%
test 153 3 408 1 86 11 44% 0% 0,7%
train 1781 43 305 33 946 392 47% 1% 1,9%
pronouns test 285 1705 - 65 - 7% 0% 0,0%
pud test 1000 21176 45 550 197 45% 1% 4,5%
Total 32641 555941 1408 17984 5 286 47% 1% 4,1%
sample 60 1 086 - 30 50% 0% 0,0%

Table 1: Statistics for the English UD corpora: for each corpus and type, it shows the numbers
of sentences (#sent), of tokens (#toks) and number of non-projective dependencies (#nPrj);
the number of sentences that had at least one difference with the original (#diff); the number
of tokens that had at least one lexical error (#lerr); the percentages of sentences regenerated
exactly (%regen), of tokens in error (%terr) and of non-projective sentences(%nPrj). The
next-to-last line displays the total of these values and percentage over all sentences of the
corpora. The last line shows the statistics for the sample that is studied more closely in

Section [4.3]

come from limitations of JSREALB (e.g. contractions, special word ordering that cannot be
generated, non-projective dependencies) or from errors or underspecification of the part-of-
speech, features or head field in the UD.

As we use a symbolic approach, we do not distinguish between the training, development
and test splits of a corpus, we consider them as different corpora. This allows an overall
judgment on what we feel to be the precision of the informations in the UDs. The last
subsection provides a more detailed analysis of a representative sample of the corpora.

4.1 English corpora

Table |1} shows statistics about the 14 English corpora that comprise 32,641 sentences of
which 1,408 (4,1%) have non-projective dependencies and gave rise to 17,984 warnings. We
did not use the three English ESL corpora because they do not provide any information
about the lemma and the features of tokens, they only give their form and relation name.

12

United

Corpus | #occ | upos | lemma feats
EWT 93 | ADJ United | Degree=Pos
GUM 80 | VERB | Unite Tense=Past,VerbForm=Part
Lines 9 | PROPN | United | Number=Sing
Partut 11 | PROPN | United
PUD 6 | PROPN | United | Number=Sing

New
Corpus | #occ | upos | lemma feats
EWT 95 | ADJ New Degree=Pos
GUM 80 | PROPN | New Number=Sing
Lines 21 | PROPN | New Number=Sing
Partut 3 | PROPN | New
PUD 7 | PROPN | United | Number=Sing

Table 2: This table shows the different, and inconsistent across English corpora, part of
speech, lemma and features associated with a two common English words used in proper
names. The second column gives the number of occurrences in each English corpus.

Table [1] shows that on average about 47% of the sentences are regenerated exactly ignor-
ing capitalization and spacing. Many of the differences are due to contractions (e.g. aint or
he'll) for which JSREALB realizes the long form (is not or he will). There are two outliers: the
pronouns corpus which uses a limited vocabulary and was manually designed to illustrate
many variations of pronouns; in fact, we used it to design our pronoun transformations; the
lines corpus has a high ratio of unknown lemmata some of which are dubious: (collapsi-
ble—expandable), &, vague as adjective, smile’ and even wrote which occurs 11 times or
opened, 21 times.

Looking at the results, we found that one important source of differences was the fact
that in many English corpora, person and number were not given as features of verbs except
for the third person singular. There are more about 11,5K instances of these in the EWT
corpus, but none in the GUM corpus and about 9K in all other English corpora. As JSREALB
uses the third person singular as default, the generated sentence comes out right most of the
time, except when the subject is a pronoun at the first or second person or is plural.

We also discovered some inconsistencies between English corpora even for very common
words. Table [2] shows occurrences of United used in United States, United Nations or United
Kingdom and of New such as in New York, New England, New Delhi... In the previous version
(2.7) of UDs, all United had been tagged as PROPN.

Given the fact that the JISREALB lexicon does contain the adjective United (with a capital
U) or the verb Unite also with a capital, this raised warnings. A similar problem occurred for
the adjective New used in New Year, New Left for which some occurrences are adjectives and
others are part of a proper noun. JSREALB lexicon does not contain these lemmata with a

13

capital. This may seem anecdotical, but they occur quite frequently and is quite typical of
inconsistency problems.

Another source of warnings is the fact that some words are tagged dubiously: there are
strange conjunctions such as the following of (264 occurrences), in (181), by (162), with (142),
on (99) ...

Although POS tags are consistent most of the time within a corpus, this is not the case
between corpora for the same language, especially for a non-low resource language such as
English, so some care should be used when combining these corpora in a learning scheme for
a given language, unless the learning scheme does not care about number, person and POS
tags.

In order to limit the number of warnings, we decided to add a few dubious lemmas:

e best and better were added as lemmas, although we think that the appropriate lemma
should be good or well specifying the Degree feature: superlative (Sup) or comparative

(Cmp).
e & was added as a lemma for a conjunction, but it should be and.

e in formal English, adjective and nouns corresponding to nationalities start with a
capital letter (e.g. American or European), but we also had to accept the lowercase
form as lemma for thesd’]

4.2 French corpora

The 14 French UD corpora provide 26,586 sentences of which 1,130 (4,3 %) have non-
projective dependencies. UDREGENERATOR regenerates about 53% of the sentences, which
is slightly more than for the English corpora, but the overall statistics are similar between
French and English.

As for English, many of the warnings were generated by strange part of speech tags:
comme tagged (796 occurrences) as a preposition instead of adverb or conjunction, puis
(225 occurrences) as conjunction instead of adverb. There a number of lemmata that were
incomplete or erroneous. Here are a few examples across all French corpora:

bad part of speech : certain (343 times) is a determiner instead of an adjective; comme
(796 times) is a preposition instead of a conjunction;

orthographic error : region (14 times) instead of région, inégalite (4 times) instead of
inégalité, pubblicitaire (5 times) instead of publicitaire;

bad lemma : humains(6 times), performances (5 times), normes (4 times), financements,
intactes or ressources whose lemma should be singular.

This is a good illustration of how UDREGENERATOR can help improve UD information.

9Most of these cases, have been corrected in version 2.8 of some corpora, namely EWT, following our
remarks about this problem in a previous version of this paper

14

Corpus type #sent #toks #nPrj #diff #lerr %regen Y%terr %nPrj

fqb test 2289 23901 75 1321 682 42% 3% 3,3%
gsd dev 1476 35707 60 702 522 52% 1% 4.1%
test 416 10 013 17 233 147 44% 1% 41%
train 14 449 354 529 587 6670 4971 54% 1% 4,1%
partut dev 107 1 870 2 64 64 40% 3% 1,9%
test 110 2 603 1 62 68 44% 3% 0,9%
train 803 24 122 49 506 463 37% 2% 6,1%
pud test 1000 24 726 17 445 460 56% 2% 1%
sequoia dev 412 9999 10 175 190 58% 2% 2,4%
test 456 10 044 9 204 182 55% 2% 2,0%
train 2231 50 505 47 992 915 56% 2% 21%
spoken dev 919 9973 73 400 252 56% 3% 7,9%
test 743 9 968 80 220 300 70% 3% 10,8%
train 1175 15031 103 509 347 57% 2% 8,8%
Total 26 586 582991 1130 12503 9 563 53% 2% 4,3%
Sample 60 1233 3 37 24 38% 2% 5,0%

Table 3: Statistics for the French UD corpora: for each corpus and type, it shows the numbers
of sentences (#sent), of tokens (#toks) and number of non-projective dependencies (#nPrj);
the number of sentences that had at least one difference with the original (#diff); the number
of tokens that had at least one lexical error (#lerr); the percentages of sentences regenerated
exactly (%regen), of tokens in error (%terr) and of non-projective sentences (%nPrj). The
next-to-last line displays the total of these values and percentage over all sentences of the
corpora. The last line shows the statistics for the sample that is studied more closely in

Section 4.3l

In both French and English corpora, we found a few instances of bad head links for which
regeneration produces words in the wrong order (see Figure . The tree representation is
particularly useful for checking these as there are crossing arcs. We noticed that most often
this occurs in non-projective dependencies, this is why the system flags these in order so
that they can be identified more easily and checked.

4.3 Sample corpora

In order to get a more precise appraisal of the quality of the UD information, we studied
in detail a sample of 10 sentences from each of the 6 English and French test corpora for
which we used UDREGENERATOR to recreate the original sentence['Y) The percentages on
the last line of Tables 1] and |3| show that these samples have roughly the same characteristics

10These sample corpora including the equivalent JISREALB expressions are available at http://rali.iro.
umontreal.ca/JSrealB/current/demos/UDregenerator/UD-2.8/sample/

15

http://rali.iro.umontreal.ca/JSrealB/current/demos/UDregenerator/UD-2.8/sample/
http://rali.iro.umontreal.ca/JSrealB/current/demos/UDregenerator/UD-2.8/sample/

as the whole corpus from which they were taken, except that there are no non-projective
dependencies in the English sample, a small percentage anyway.

This experiment shows that JSREALB has an almost complete coverage of English and
French grammatical constructs found in the corpora, except for some specialized terminology
which can be easily added to the lexicon or given as quoted words that will appear verbatim
in the output. We encountered only 12 unknown tokens over 1,086 in English and 4 unknown
tokens over 1233 in French. In some cases (7 for English and 5 in French) JSREALB could
not reproduce the exact order of some of the words in a sentence: e.g., when an adverb
is inserted within a conjugated modal (e.g. would never use) or because of non-projective
dependencies. In all the cases, the sentences kept their original meaning.

In English, 24 sentences were reproduced verbatim, without any modification either to
the UD coding or the generated JSREALB expression. There were 5 cases of contractions
(e.g., doesn't instead of does not, I've instead of | have) that JISREALB does not generate.
Three cases of limitations of JSREALB because of modals being applied to noun phrases
because of the transformation process limits. But we found 23 tokens (over 1,086) for which
there errors or omissions in either the part of speech tags (UP0S), features or lemma. Those
are very small numbers computed over only 60 sentences, the whole corpus being 490 times
greater.

We also experimented with 60 sentences sampled from French corpora with the following
results: 26 were regenerated verbatim without any intervention. 48 tokens (over 1233) errors
or omissions in either the part of speech tags (UP0S), features or lemma. There were 5 cases
of word ordering in some part of a sentence, most because of non-projective dependencies,
a case of an incomplete sentence and an unusual encoding of coordination. The encoding of
pronouns is especially delicate because different corpora do not use the same conventions. A
case of JSREALB limitations was encountered for the verb pouvoir: je peux at interrogative
form should be realized as puis-je and not peux-je.

This is an experiment over a very small sample (0,23%) of sentences from the French and
English corpora, but we think that is shows that there is a need to recheck the information
in UD as it is often used as gold standard and sometimes even used as a mapping source for
other lower-resourced languages. We also showed that UDREGENERATOR can be a useful
tool for pointing out some eventual problems in the encoding of tokens and relations.

5 Conclusion

This work which was first motivated for exercising JSREALB in order to measure its coverage,
finally made us realize that UDs while being a source of useful linguistic information, would
benefit a check by trying to regenerate the sentences from the provided information. We are
not aware any previous attempt to do such an experiment.

Sentence regeneration is not foolproof because different feature combinations can produce
the same sentences, but we showed that in some cases it helps to pinpoint discrepancies be-
tween what is specified and the expected outcome a process similar to the Schema validation
of XML files. UDREGENERATOR is far from perfect, but it is a convenient tool for doing

16

some sanity checking on the lemma, part of speech, features and head fields. We hope that
this work will help improve the precision of the wealth of useful information contained in

UDs.

References

1]

Guillaume Le Berre, Christophe Cerisara, Philippe Langlais, and Guy Lapalme. Un-
supervised multiple choice question generation for out-of-domain Q&A fine-tuning. In
submitted, page 4p., May 2021.

Albert Gatt and Ehud Reiter. SimpleNLG: A realisation engine for practical applica-
tions. In Proceedings of the 12th Furopean Workshop on Natural Language Generation
(ENLG 2009), pages 90-93, Athens, Greece, March 2009. Association for Computational

Linguistics.

Arian Hosseini, Siva Reddy, Dzmitry Bahdanau, R Devon Hjelm, Alessandro Sordoni,
and Aaron Courville. Understanding by understanding not: Modeling negation in lan-
guage models. arXiv:2105.03519, May 2021.

Sylvain Kahane, Alexis Nasr, and Owen Rambow. Pseudo-projectivity, a polynomially
parsable non-projective dependency grammar. In 36th Annual Meeting of the Associ-
ation for Computational Linguistics and 17th International Conference on Computa-
tional Linguistics, Volume 1, pages 646-652, Montreal, Quebec, Canada, August 1998.
Association for Computational Linguistics.

Guy Lapalme. Realizing Universal Dependencies Structures. Internal report, http://
rali.iro.umontreal.ca/rali/sites/default/files/publis/UDSurfR.pdf, RALI-
DIRO, 10/2019 2019.

Simon Mille, Anja Belz, Bernd Bohnet, Yvette Graham, and Leo Wanner. The Second
Multilingual Surface Realisation Shared Task (SR’19): Overview and Evaluation Re-
sults. In Proceedings of the 2nd Workshop on Multilingual Surface Realisation (MSR),
2019 Conference on Empirical Methods in Natural Language Processing (EMNLP),
Hong Kong, China, 2019.

Paul Molins and Guy Lapalme. JSrealB: A bilingual text realizer for web program-
ming. In Proceedings of the 15th Furopean Workshop on Natural Language Generation

(ENLG), pages 109-111, Brighton, UK, September 2015. Association for Computational
Linguistics.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajic,
Christopher D. Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia Sil-
veira, Reut Tsarfaty, and Daniel Zeman. Universal dependencies v1: A multilingual
treebank collection. In Proceedings of the Tenth International Conference on Language

17

http://rali.iro.umontreal.ca/rali/sites/default/files/publis/UDSurfR.pdf
http://rali.iro.umontreal.ca/rali/sites/default/files/publis/UDSurfR.pdf

[10]

[11]

Resources and Fvaluation (LREC 2016), pages 1659-1666, Portoroz, Slovenia, May
2016. European Language Resources Association (ELRA).

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and Christopher D. Manning.
Stanza: A python natural language processing toolkit for many human languages. In
ACL-2020 : System Demonstrations, 2020.

Fei Xia and Martha Palmer. Converting dependency structures to phrase structures.
In Proceedings of the First International Conference on Human Language Technology
Research, 2001.

Daniel Zeman, Joakim Nivre, , and many others. Universal dependencies 2.8.1, 2021.
LINDAT /CLARIAH-CZ digital library at the Institute of Formal and Applied Linguis-
tics (UFAL), Faculty of Mathematics and Physics, Charles University.

18

6 Appendix: Searching for combinations of tokens

UDREGENERATOR, can identify some errors or missing features in a given UD, but we found
interesting to search in a file of UDs if this combination exists in other UD. It seems that
many researchers use grep or string searching of a text editor or even special purpose scripts
to check for specific combinations of features for a given token. Here are a few examples of
typical searches:

e for a proper noun (UPOS=PROPN), the LEMMA should be the same as the FORM;
e when the FEATS contains Typo, the MISC should have a CorrectForm;

e if a FORM ends with s, but the LEMMA does not, then FEATS should have Plur as shown
in Figure [0l In the identified tokens, words like means and hours, should have the
feature Number=Plur, but given that mechanics and statistics are singular words,
the lemma should be changed.

None of these combinations are foolproof, but they can easily be checked once they are
identified and they can then be modified in the original file if needed. To help identify these
types of feature combinations, we have set up a web pagd!| to search in local UD files. Each
UD field can be matched for a regular expression or its negation. It is also possible to check
if a FORM is the same or different from the LEMMA. All tokens in the file that match these
conditions are displayed in a table, in which it is possible to select one to get the sentence in
which it occurs, the identification of the sentence (sent_id) and the line number in the file.

As UDGREP does not use any language specifics, it can be used to find patterns on UDs
in any language. Patterns entered by the user are, of course, language specific.

1 Available at http://rali.iro.umontreal.ca/JSrealB/current/demos/UDregenerator/UDgrep.
html

19

http://rali.iro.umontreal.ca/JSrealB/current/demos/UDregenerator/UDgrep.html
http://rali.iro.umontreal.ca/JSrealB/current/demos/UDregenerator/UDgrep.html

Search tokens in a Universal Dependency file

Show instructions Select an UD file en_gum-ud-train.conllu

—Filters
ID FORM ss =" LEMMA ss UPOS noun XPOS FEATS plur
HEAD DEPREL DEPS MISC Ignore Case
reParse
8 tokens
ID FORM LEMMA UPOS | XPOS FEATS HEAD | DEPREL DEPS MisC
16|Systems system NOUN |NN Number=Sing | 20/compound |20:compo... |Entity=abstract-4)
11|mechanics mechanic NOUN |NN Number=Sing 7/nmod 7:nmod:to |Entity=(abstract-13)ab...
15 mechanics mechanic INOUN NN Number=Sing | 11 parataxis | 11:parataxis |Entity=abstract-14)|Sp... |
25 statistics tatisti NOUN |NN Number=Sing 23/conj 21:nmod:i... |Entity=(abstract-17)ab... |
18| metaphysics metaphysic NOUN |NN Number=Sing 16|conj 14:nmod:... |Entity=(abstract-91)|S...
18|counter-meas... |counter-meas... NOUN NN Number=Sing 15/obj 15:0bj Entity=object-85)
2 hours hour NOUN |NN Number=Sing 7 nsubj 7:nsubj Entity=time-173)|Spac...
1/shorts short INOUN |NN Number=Sing | 4/nsubj:pass |4:nsubj:pass |Discourse=backgroun... |
line 108897
sent_idGUM_voyage_thailand-24
D |1
text shorts are primarily worn by laborers and schoolchildren.
Display as Links @ Spacing in pixels: Word s : Letter o ¢
aux pass- 0n_|
advmod (_(c)ase
shortsare pnmanly wom by laLorers and schoolchlldren

Guy Lapalme

Figure 6: Identification of curious English nouns that end with s, but not their lemma and
that do not contain Plur in their features. A colored field name shows a regular expression
that should match the field, a complemented name (with an overbar) shows a regular expres-
sion that should not match. The identified tokens are shown in a table in which it is possible
to select a cell to show the context of this token: sentence with the token highlighted, the
id of the sentence and its line number in the file. The dependency graph of the sentence is
also shown.

20

	Universal Dependencies
	UDregenerator
	UD in JSON
	jsRealB

	Building the Syntactic Representation
	Morphology
	JSON notation of UD to Syntactic Representation
	Working with French

	Experiments
	English corpora
	French corpora
	Sample corpora

	Conclusion
	Appendix: Searching for combinations of tokens

